Two adaptive wavelet algorithms for non-linear parabolic partial differential equations

被引:11
作者
Chiavassa, G
Guichaoua, M
Liandrat, J
机构
[1] LATP, F-13451 Marseille 20, France
[2] ESM2, F-13451 Marseille, France
[3] IRPHE, F-13451 Marseille 20, France
关键词
wavelets; adaptive methods; non-linear PDEs;
D O I
10.1016/S0045-7930(01)00061-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper is concerned with the construction of wavelet based adaptive algorithms for the numerical resolution of evolution equations. The adaptivity is applied into two complementary directions. The first direction shares the approaches involved in classical adaptive finite element methods and is related to a solution dependent definition of spaces of approximation. The second direction is related to the approximation of evolution operators that is made solution dependent following the philosophy of essentially non-oscillatory schemes. After the construction of the schemes, numerical tests are provided. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:467 / 480
页数:14
相关论文
共 19 条
[1]  
Aràndiga F, 1999, SIAM J SCI COMPUT, V20, P1053, DOI 10.1137/S1064827596308822
[2]   Multiresolution based on weighted averages of the hat function I: Linear reconstruction techniques [J].
Arandiga, F ;
Donat, R ;
Harten, A .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 36 (01) :160-203
[3]   SPECTRAL AND FINITE-DIFFERENCE SOLUTIONS OF THE BURGERS-EQUATION [J].
BASDEVANT, C ;
DEVILLE, M ;
HALDENWANG, P ;
LACROIX, JM ;
OUAZZANI, J ;
PEYRET, R ;
ORLANDI, P ;
PATERA, AT .
COMPUTERS & FLUIDS, 1986, 14 (01) :23-41
[4]  
CHARTON P, 1996, MATEMATICA APLICADA, P15
[5]   A fully adaptive wavelet algorithm for parabolic partial differential equations [J].
Chiavassa, G ;
Liandrat, J .
APPLIED NUMERICAL MATHEMATICS, 2001, 36 (2-3) :333-358
[6]  
Dahmen W., 1997, Acta Numerica, V6, P55, DOI 10.1017/S0962492900002713
[7]  
Daubechies I., 1993, Ten Lectures of Wavelets, V28, P350
[8]   NUMERICAL STUDY OF THERMAL-DIFFUSIVE INSTABILITY OF PREMIXED FLAMES [J].
DENET, B ;
HALDENWANG, P .
COMBUSTION SCIENCE AND TECHNOLOGY, 1992, 86 (1-6) :199-221
[9]  
FROHLICH J, 1994, EUR J MECH B-FLUID, V13, P439
[10]   Numerical simulation of decaying turbulence in an adaptive wavelet basis [J].
Frohlich, J ;
Schneider, K .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1996, 3 (04) :393-397