Higher-order and crystalline topology in a phenomenological tight-binding model of lead telluride

被引:9
作者
Robredo, Inigo [1 ,2 ]
Vergniory, Maia G. [1 ,3 ]
Bradlyn, Barry [4 ,5 ]
机构
[1] Donostia Int Phys Ctr, Donostia San Sebastian 20018, Spain
[2] Univ Basque Country, Dept Condensed Matter Phys, UPV EHU, Apartado 644, Bilbao 48080, Spain
[3] Ikerbasque, Basque Fdn Sci, Maria Diaz de Haro 3, Bilbao 48013, Spain
[4] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[5] Univ Illinois, Inst Condensed Matter Theory, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
BILBAO CRYSTALLOGRAPHIC SERVER; REALIZATION; INSULATOR; PARITY; REPRESENTATIONS; TRANSITION; CATALOG;
D O I
10.1103/PhysRevMaterials.3.041202
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, we revisit the model of PbTe presented by Fradkin et al. [Phys. Rev. Lett. 57, 2967 (1986)]. We show that the low-energy theory of this model corresponds to a (higher-order) topological crystalline insulator in space group Fm (3) over bar m1', diagnosable by symmetry indicators. We show that the gapless fermions found on antiphase domain walls are the topological boundary modes of the system, due to a nonvanishing mirror Chern number. Furthermore, we show that any symmetric completion of the model must be in this same topological phase. Finally, we comment on the relationship of this model to realistic PbTe, which has recently been predicted to have a phase which realizes same bulk symmetry indicators.
引用
收藏
页数:6
相关论文
共 63 条
[1]   Topological Insulators from Group Cohomology [J].
Alexandradinata, A. ;
Wang, Zhijun ;
Bernevig, B. Andrei .
PHYSICAL REVIEW X, 2016, 6 (02)
[2]   Spin-Orbit-Free Topological Insulators without Time-Reversal Symmetry [J].
Alexandradinata, A. ;
Fang, Chen ;
Gilbert, Matthew J. ;
Bernevig, B. Andrei .
PHYSICAL REVIEW LETTERS, 2014, 113 (11)
[3]  
[Anonymous], ARXIV180902142
[4]  
[Anonymous], UNPUB
[5]  
[Anonymous], BILBAO CRYSTALLOGR S
[6]  
[Anonymous], UNPUB
[7]  
[Anonymous], ARXIV180903518
[8]  
[Anonymous], 2016, INT TABLES CRYSTALLO, DOI DOI 10.1107/97809553602060000114
[9]  
[Anonymous], UNPUB
[10]  
[Anonymous], 2018, CHECK TOPOLOGICAL MA