3D-printed electrochemical sensors: A new horizon for measurement of biomolecules

被引:89
作者
Abdalla, Aya [1 ,2 ]
Patel, Bhavik Anil [1 ,2 ]
机构
[1] Univ Brighton, Sch Pharm & Biomol Sci, Brighton BN2 4GJ, E Sussex, England
[2] Univ Brighton, Ctr Stress & Age Related Dis, Brighton BN2 4GJ, E Sussex, England
关键词
Additive manufacturing; 3D-printing; Electrochemistry; Bioanalysis; Neurotransmitters; GRAPHENE ELECTRODES; SYSTEMS;
D O I
10.1016/j.coelec.2020.04.009
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical sensors are widely used to monitor bio-molecules. However, limitations in sensor geometry have restricted the scope of currently used electrochemical sensors. 3D-printing has emerged as a promising manufacturing approach, to robustly make electrochemical sensors, that can stably measure in biological environments. This review high-lights the recent trends in the development of 3D-printed electrodes and biosensors for measurement of biomolecules. Novel geometries of 3D-printed electrodes have provided the means to conduct ex vivo measurement in the intestinal tract and in vivo measurements in the brain. 3D-printing is providing the ability to manufacture electrochemical sensors that can measure biomolecules in diverse areas of the body.
引用
收藏
页码:78 / 81
页数:4
相关论文
共 26 条
[1]  
Adams Anngela, 2018, J Diabetes Sci Technol, V12, P176, DOI 10.1177/1932296817715272
[2]   In Vitro Electrochemistry of Biological Systems [J].
Adams, Kelly L. ;
Puchades, Maja ;
Ewing, Andrew G. .
ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, 2008, 1 (01) :329-355
[3]   3D-printing technologies for electrochemical applications [J].
Ambrosi, Adriano ;
Pumera, Martin .
CHEMICAL SOCIETY REVIEWS, 2016, 45 (10) :2740-2755
[4]   Additive-manufactured (3D-printed) electrochemical sensors: A critical review [J].
Cardoso, Rafael M. ;
Kalinke, Cristiane ;
Rocha, Raquel G. ;
dos Santos, Pamyla L. ;
Rocha, Diego P. ;
Oliveira, Paulo R. ;
Janegitz, Bruno C. ;
Bonacin, Juliano A. ;
Richter, Eduardo M. ;
Munoz, Rodrigo A. A. .
ANALYTICA CHIMICA ACTA, 2020, 1118 :73-91
[5]   3D-Printed graphene/polylactic acid electrode for bioanalysis: Biosensing of glucose and simultaneous determination of uric acid and nitrite in biological fluids [J].
Cardoso, Rafael M. ;
Silva, Pablo R. L. ;
Lima, Ana P. ;
Rocha, Diego P. ;
Oliveira, Thiago C. ;
do Prado, Thiago M. ;
Fava, Elson L. ;
Fatibello-Filho, Orlando ;
Richter, Eduardo M. ;
Munoz, Rodrigo A. A. .
SENSORS AND ACTUATORS B-CHEMICAL, 2020, 307
[6]   3D printing for electroanalysis: From multiuse electrochemical cells to sensors [J].
Cardoso, Rafael M. ;
Mendonca, Dianderson M. H. ;
Silva, Weberson P. ;
Silva, Murilo N. T. ;
Nossol, Edson ;
da Silva, Rodrigo A. B. ;
Richter, Eduardo M. ;
Munoz, Rodrigo A. A. .
ANALYTICA CHIMICA ACTA, 2018, 1033 :49-57
[7]   Recent developments in the field of screen-printed electrodes and their related applications [J].
Dominguez Renedo, O. ;
Alonso-Lomillo, M. A. ;
Arcos Martinez, M. J. .
TALANTA, 2007, 73 (02) :202-219
[8]   Enhanced performance of 3D printed graphene electrodes after electrochemical pre-treatment: Role of exposed graphene sheets [J].
dos Santos, Pamyla L. ;
Katic, Vera ;
Loureiro, Hugo C. ;
dos Santos, Matheus F. ;
dos Santos, Diego P. ;
Formiga, Andre L. B. ;
Bonacin, Juliano A. .
SENSORS AND ACTUATORS B-CHEMICAL, 2019, 281 :837-848
[9]   The capacitance and electron transfer of 3D-printed graphene electrodes are dramatically influenced by the type of solvent used for pre-treatment [J].
Gusmao, Rui ;
Browne, Michelle P. ;
Sofer, Zdenek ;
Pumera, Martin .
ELECTROCHEMISTRY COMMUNICATIONS, 2019, 102 :83-88
[10]   Three-Dimensional-Printed Electrochemical Sensor for Simultaneous Dual Monitoring of Serotonin Overflow and Circular Muscle Contraction [J].
Hamzah, H. H. ;
Keattch, O. ;
Yeoman, M. S. ;
Covill, D. ;
Patel, B. A. .
ANALYTICAL CHEMISTRY, 2019, 91 (18) :12014-12020