Automatic Clustering and Semantic Annotation for Dynamic IoT Sensor Data

被引:5
作者
Yu, Ching-Tzu [1 ]
Zou, Yu-Hui [2 ]
Li, Hao-Yu [2 ]
Lin, Szu-Yin [2 ]
机构
[1] Natl Chiao Tung Univ, Inst Informat Management, Hsinchu, Taiwan
[2] Chung Yuan Christian Univ, Dept Informat Management, Taoyuan, Taoyuan County, Taiwan
来源
2018 FIRST INTERNATIONAL COGNITIVE CITIES CONFERENCE (IC3 2018) | 2018年
关键词
Internet of Things; Ontology; Semantic Annotation; Clustering;
D O I
10.1109/IC3.2018.00-30
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In a dynamic IoT environment, distributed sensors are used to collect real-time data continually. However, it is difficult to transform the dynamic data into a machine-readable and machine-interpretable form. we propose a semantic annotation approach to annotate sensor data via semantics. Firstly, this approach builds an ontology based on Semantic Sensor Network Ontology (SSN Ontology) for dynamic IoT sensor data. Then, the new knowledge is collected from input data by using the K-Means clustering, and to update the semantic information into the base ontology. The updated ontology forms the basis for semantic annotation.
引用
收藏
页码:188 / 189
页数:2
相关论文
共 5 条
  • [1] Data Mining for Wearable Sensors in Health Monitoring Systems: A Review of Recent Trends and Challenges
    Banaee, Hadi
    Ahmed, Mobyen Uddin
    Loutfi, Amy
    [J]. SENSORS, 2013, 13 (12) : 17472 - 17500
  • [2] Fayyad U, 1996, AI MAG, V17, P37
  • [3] Wei W, 2012, TURST SEC PRIV COMP
  • [4] Wei W, 2009, LECT NOTES COMPUT SC, V5741, P66
  • [5] An Upper-Ontology-Based Approach for Automatic Construction of IOT Ontology
    Xu, Yuan
    Zhang, Chunhong
    Ji, Yang
    [J]. INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2014,