Particle dynamics in sheared particulate suspensions

被引:2
|
作者
Strybulevych, Anatoliy [1 ,2 ]
Norisuye, Tomohisa [2 ]
Hasselfield, Matthew [1 ,3 ]
Page, John H. [1 ]
机构
[1] Univ Manitoba, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada
[2] Kyoto Inst Technol, Grad Sch Sci & Technol, Dept Macromol Sci & Engn, Kyoto 6068585, Japan
[3] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA
基金
加拿大自然科学与工程研究理事会;
关键词
multiphase flow; particle technology; suspensions; granular temperature; dynamic sound scattering; DOPPLER VELOCIMETRY MEASUREMENTS; PRESSURE-DRIVEN FLOW; VELOCITY FLUCTUATIONS; CONCENTRATED SUSPENSIONS; ULTRASOUND SCATTERING; FLUIDIZED-BED; MIGRATION; SPECTROSCOPY; COUETTE; FIELD;
D O I
10.1002/aic.16431
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Measurements of particle dynamics of neutrally buoyant suspensions of non-Brownian glass beads in a Couette cell using dynamic sound scattering are reported. The dynamics were studied under steady shear flow across the entire gap between the stator and rotor for shear rates from 0.26 to 6.59s(-1) and particle concentrations from 20% to 50%, thereby enabling a comprehensive investigation of the dynamics to be carried out. The average particle velocity profile varies linearly with depth inside the cell for all shear rates and concentrations. The fluctuations in the particle velocities are large, indicating that the particles are not confined to streamlines but continue to fluctuate substantially during steady flow. Our data indicate that the fluctuations are anisotropic. The components of the velocity fluctuations (granular temperature) parallel to the flow and in the vertical direction are much larger than in the radial direction. The fluctuation anisotropy decreases as the concentration increases. (c) 2018 American Institute of Chemical Engineers AIChE J, 65: 840-849, 2019
引用
收藏
页码:840 / 849
页数:10
相关论文
共 50 条
  • [21] Irreversibility and rate dependence in sheared adhesive suspensions
    Ge, Zhouyang
    Martone, Raffaella
    Brandt, Luca
    Minale, Mario
    PHYSICAL REVIEW FLUIDS, 2021, 6 (10)
  • [22] Simulation of sheared suspensions with a parallel implementation of QDPD
    Sims, JS
    Martys, N
    JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, 2004, 109 (02) : 267 - 277
  • [23] Nuclear magnetic resonance measurement of shear-induced particle migration in Brownian suspensions
    Brown, Jennifer R.
    Fridjonsson, Einar O.
    Seymour, Joseph D.
    Codd, Sarah L.
    PHYSICS OF FLUIDS, 2009, 21 (09)
  • [24] Effective temperature for sheared suspensions: A route towards closures for migration in bidisperse suspension
    van der Sman, R. G. M.
    Vollebregt, H. M.
    ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2012, 185 : 1 - 13
  • [25] Dynamics, rheology, and applications of elastic deformable particle suspensions: a review
    Villone, Massimiliano M.
    Maffettone, Pier Luca
    RHEOLOGICA ACTA, 2019, 58 (3-4) : 109 - 130
  • [26] Microstructure of sheared monosized colloidal suspensions resulting from hydrodynamic and electrostatic interactions
    Xu, Bu
    Gilchrist, James F.
    JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (20)
  • [27] Interparticle friction in sheared dense suspensions: Comparison of the viscous and frictional rheology descriptions
    Peerbooms, Wouter
    Nadorp, Tim
    van der Heijden, Antoine
    Breugem, Wim-Paul
    JOURNAL OF RHEOLOGY, 2024, 68 (02) : 263 - 283
  • [28] Influence of confinement by smooth and rough walls on particle dynamics in dense hard-sphere suspensions
    Eral, H. B.
    van den Ende, D.
    Mugele, F.
    Duits, M. H. G.
    PHYSICAL REVIEW E, 2009, 80 (06):
  • [29] Taylor's experiment in a periodically sheared particulate suspension
    Souzy, Mathieu
    Phong Pham
    Metzger, Bloen
    PHYSICAL REVIEW FLUIDS, 2016, 1 (04):
  • [30] Normal stress measurements in sheared non-Brownian suspensions
    Garland, S.
    Gauthier, G.
    Martin, J.
    Morris, J. F.
    JOURNAL OF RHEOLOGY, 2013, 57 (01) : 71 - 88