Particle dynamics in sheared particulate suspensions

被引:2
作者
Strybulevych, Anatoliy [1 ,2 ]
Norisuye, Tomohisa [2 ]
Hasselfield, Matthew [1 ,3 ]
Page, John H. [1 ]
机构
[1] Univ Manitoba, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada
[2] Kyoto Inst Technol, Grad Sch Sci & Technol, Dept Macromol Sci & Engn, Kyoto 6068585, Japan
[3] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA
基金
加拿大自然科学与工程研究理事会;
关键词
multiphase flow; particle technology; suspensions; granular temperature; dynamic sound scattering; DOPPLER VELOCIMETRY MEASUREMENTS; PRESSURE-DRIVEN FLOW; VELOCITY FLUCTUATIONS; CONCENTRATED SUSPENSIONS; ULTRASOUND SCATTERING; FLUIDIZED-BED; MIGRATION; SPECTROSCOPY; COUETTE; FIELD;
D O I
10.1002/aic.16431
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Measurements of particle dynamics of neutrally buoyant suspensions of non-Brownian glass beads in a Couette cell using dynamic sound scattering are reported. The dynamics were studied under steady shear flow across the entire gap between the stator and rotor for shear rates from 0.26 to 6.59s(-1) and particle concentrations from 20% to 50%, thereby enabling a comprehensive investigation of the dynamics to be carried out. The average particle velocity profile varies linearly with depth inside the cell for all shear rates and concentrations. The fluctuations in the particle velocities are large, indicating that the particles are not confined to streamlines but continue to fluctuate substantially during steady flow. Our data indicate that the fluctuations are anisotropic. The components of the velocity fluctuations (granular temperature) parallel to the flow and in the vertical direction are much larger than in the radial direction. The fluctuation anisotropy decreases as the concentration increases. (c) 2018 American Institute of Chemical Engineers AIChE J, 65: 840-849, 2019
引用
收藏
页码:840 / 849
页数:10
相关论文
共 30 条
[1]   Hydrodynamic stability of a suspension in cylindrical Couette flow [J].
Ali, ME ;
Mitra, D ;
Schwille, JA ;
Lueptow, RM .
PHYSICS OF FLUIDS, 2002, 14 (03) :1236-1243
[2]   Mixing and segregation in a bidisperse gas-solid fluidised bed: a numerical and experimental study [J].
Bokkers, GA ;
Annaland, MVS ;
Kuipers, JAM .
POWDER TECHNOLOGY, 2004, 140 (03) :176-186
[3]   The measurement of the shear-induced particle and fluid tracer diffusivities in concentrated suspensions by a novel method [J].
Breedveld, V ;
Van den Ende, D ;
Tripathi, A ;
Acrivos, A .
JOURNAL OF FLUID MECHANICS, 1998, 375 :297-318
[4]   Screening mechanisms in sedimentation [J].
Brenner, MP .
PHYSICS OF FLUIDS, 1999, 11 (04) :754-772
[5]   Particle distribution in suspension shear flow [J].
Buyevich, YA .
CHEMICAL ENGINEERING SCIENCE, 1996, 51 (04) :635-647
[6]   SHEAR-INDUCED PARTICLE MIGRATION IN COUETTE AND PARALLEL-PLATE VISCOMETERS - NMR IMAGING AND STRESS MEASUREMENTS [J].
CHOW, AW ;
SINTON, SW ;
IWAMIYA, JH ;
STEPHENS, TS .
PHYSICS OF FLUIDS, 1994, 6 (08) :2561-2576
[7]   Dynamic sound scattering: Field fluctuation spectroscopy with singly scattered ultrasound in the near and far fields [J].
Cowan, M. L. ;
Page, J. H. ;
Norisuye, T. ;
Weitz, D. A. .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2016, 140 (03) :1992-2001
[8]   Velocity fluctuations in fluidized suspensions probed by ultrasonic correlation spectroscopy [J].
Cowan, ML ;
Page, JH ;
Weitz, DA .
PHYSICAL REVIEW LETTERS, 2000, 85 (02) :453-456
[9]   Extension of PIV for measuring granular temperature field in dense fluidized beds [J].
Dijkhuizen, W. ;
Bokkers, G. A. ;
Deen, N. G. ;
Annaland, M. van Sint ;
Kuipers, J. A. M. .
AICHE JOURNAL, 2007, 53 (01) :108-118
[10]   Microstructure and velocity fluctuations in sheared suspensions [J].
Drazer, G ;
Koplik, J ;
Khusid, B ;
Acrivos, A .
JOURNAL OF FLUID MECHANICS, 2004, 511 :237-263