Particle dynamics in sheared particulate suspensions

被引:2
|
作者
Strybulevych, Anatoliy [1 ,2 ]
Norisuye, Tomohisa [2 ]
Hasselfield, Matthew [1 ,3 ]
Page, John H. [1 ]
机构
[1] Univ Manitoba, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada
[2] Kyoto Inst Technol, Grad Sch Sci & Technol, Dept Macromol Sci & Engn, Kyoto 6068585, Japan
[3] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA
基金
加拿大自然科学与工程研究理事会;
关键词
multiphase flow; particle technology; suspensions; granular temperature; dynamic sound scattering; DOPPLER VELOCIMETRY MEASUREMENTS; PRESSURE-DRIVEN FLOW; VELOCITY FLUCTUATIONS; CONCENTRATED SUSPENSIONS; ULTRASOUND SCATTERING; FLUIDIZED-BED; MIGRATION; SPECTROSCOPY; COUETTE; FIELD;
D O I
10.1002/aic.16431
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Measurements of particle dynamics of neutrally buoyant suspensions of non-Brownian glass beads in a Couette cell using dynamic sound scattering are reported. The dynamics were studied under steady shear flow across the entire gap between the stator and rotor for shear rates from 0.26 to 6.59s(-1) and particle concentrations from 20% to 50%, thereby enabling a comprehensive investigation of the dynamics to be carried out. The average particle velocity profile varies linearly with depth inside the cell for all shear rates and concentrations. The fluctuations in the particle velocities are large, indicating that the particles are not confined to streamlines but continue to fluctuate substantially during steady flow. Our data indicate that the fluctuations are anisotropic. The components of the velocity fluctuations (granular temperature) parallel to the flow and in the vertical direction are much larger than in the radial direction. The fluctuation anisotropy decreases as the concentration increases. (c) 2018 American Institute of Chemical Engineers AIChE J, 65: 840-849, 2019
引用
收藏
页码:840 / 849
页数:10
相关论文
共 50 条
  • [1] Dynamic sound scattering investigation of the dynamics of sheared particulate suspensions
    Strybulevych, Anatohy
    Norisuye, Tomohisa
    Hasselfield, Matthew
    Page, J. H.
    COMPLEX SYSTEMS-BOOK 1, 2008, 982 : 354 - +
  • [2] Stretching and mixing in sheared particulate suspensions
    Souzy, M.
    Lhuissier, H.
    Villermaux, E.
    Metzger, B.
    JOURNAL OF FLUID MECHANICS, 2017, 812 : 611 - 635
  • [3] Mixing of the fluid phase in slowly sheared particle suspensions of cylinders
    Thogersen, Kjetil
    Dabrowski, Marcin
    JOURNAL OF FLUID MECHANICS, 2017, 818 : 807 - 837
  • [4] Fully developed and transient concentration profiles of particulate suspensions sheared in a cylindrical Couette cell
    Sarabian, Mohammad
    Firouznia, Mohammadhossein
    Metzger, Bloen
    Hormozi, Sarah
    JOURNAL OF FLUID MECHANICS, 2019, 862 : 659 - 671
  • [5] Channel flow of rigid sphere suspensions: Particle dynamics in the inertial regime
    Lashgari, Iman
    Picano, Francesco
    Breugem, Wim Paul
    Brandt, Luca
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2016, 78 : 12 - 24
  • [6] Particle migration and alignment in slot coating flows of elongated particle suspensions
    Siqueira, Ivan R.
    Reboucas, Rodrigo B.
    Carvalho, Marcio S.
    AICHE JOURNAL, 2017, 63 (07) : 3187 - 3198
  • [7] Porous structures impact on particle dynamics of non-Brownian and noncolloidal suspensions
    Haffner, Eileen A.
    Wilkie, Theresa
    Higham, Jonathan E.
    Mirbod, Parisa
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2024, 178
  • [8] Rheology of sheared suspensions of rough frictional particles
    Gallier, Stany
    Lemaire, Elisabeth
    Peters, Francois
    Lobry, Laurent
    JOURNAL OF FLUID MECHANICS, 2014, 757 : 514 - 549
  • [9] Particle migration in oscillatory torsional flows of concentrated suspensions
    Deshpande, Kapil V.
    Shapley, Nina C.
    JOURNAL OF RHEOLOGY, 2010, 54 (03) : 663 - 686
  • [10] Shear-induced particle migration in the flow of particle suspensions through a sudden plane expansion
    de Siqueira, Ivan Rosa
    da Carvalho, Marcio Silveira
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2018, 40 (04)