Enhancing CRISPR-Cas-Mediated Detection of Nucleic Acid and Non-nucleic Acid Targets Using Enzyme-Labeled Reporters

被引:92
作者
Samanta, Devleena [1 ]
Ebrahimi, Sasha B. [2 ]
Ramani, Namrata [3 ]
Mirkin, Chad A. [1 ,2 ,3 ]
机构
[1] Northwestern Univ, Int Inst Nanotechnol, Dept Chem, Evanston, IL 60208 USA
[2] Northwestern Univ, Int Inst Nanotechnol, Dept Chem & Biol Engn, Evanston, IL 60208 USA
[3] Northwestern Univ, Int Inst Nanotechnol, Dept Mat Sci & Engn, Evanston, IL 60208 USA
关键词
ATP; AMPLIFICATION; DIAGNOSTICS; CARE;
D O I
10.1021/jacs.2c07625
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We introduce a new method to generate an amplified signal in CRISPR-Cas-based detection. Target recognition activates a CRISPR-Cas complex, leading to catalytic cleavage of horseradish peroxidase (HRP)-labeled oligonucleotides from the surface of microbeads. We show that the HRP released into solution can be monitored through colorimetric, fluorometric, or luminescent approaches, yielding up to similar to 75-fold turn-on signal and limits of detection (LODs) as low as similar to 10 fM. Compared to Cas-based detection with a conventional fluorophore/quencher reporter, this strategy improves the LOD by similar to 30-fold. As a proof-of-concept, we show the rapid (<1 h), PCR-free, and room temperature (25 degrees C) detection of a nucleic acid marker for the SARS-CoV-2 virus with the naked eye at clinically relevant concentrations. We further show that the probe set can be programmed to be recognized and activated in the presence of non-nucleic acid targets. Specifically, we show adenosine triphosphate (ATP) binding to an aptamer can activate CRISPR-Cas and trigger a colorimetric readout, enabling the analysis of ATP in human serum samples with sensitivity on par with that of several commercially available kits. Taken together, the strategy reported herein offers a simple and sensitive platform to detect analytes where target amplification is either inconvenient (e.g., PCR under point-of-care settings) or impossible.
引用
收藏
页码:16310 / 16315
页数:6
相关论文
共 38 条
[1]   Adenosine tri-phosphate (ATP)-based cleaning monitoring in health care: how rapidly does environmental ATP deteriorate? [J].
Alfa, M. J. ;
Olson, N. ;
Murray, B-L. .
JOURNAL OF HOSPITAL INFECTION, 2015, 90 (01) :59-65
[2]   Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2 [J].
Arizti-Sanz, Jon ;
Freije, Catherine A. ;
Stanton, Alexandra C. ;
Petros, Brittany A. ;
Boehm, Chloe K. ;
Siddiqui, Sameed ;
Shaw, Bennett M. ;
Adams, Gordon ;
Kosoko-Thoroddsen, Tinna-Solveig F. ;
Kemball, Molly E. ;
Uwanibe, Jessica N. ;
Ajogbasile, Fehintola V. ;
Eromon, Philomena E. ;
Gross, Robin ;
Wronka, Loni ;
Caviness, Katie ;
Hensley, Lisa E. ;
Bergman, Nicholas H. ;
MacInnis, Bronwyn L. ;
Happi, Christian T. ;
Lemieux, Jacob E. ;
Sabeti, Pardis C. ;
Myhrvold, Cameron .
NATURE COMMUNICATIONS, 2020, 11 (01)
[3]   Discrimination of single-point mutations in unamplified genomic DNA via Cas9 immobilized on a graphene field-effect transistor [J].
Balderston, Sarah ;
Taulbee, Jeffrey J. ;
Celaya, Elizabeth ;
Fung, Kandace ;
Jiao, Amanda ;
Smith, Kasey ;
Hajian, Reza ;
Gasiunas, Giedrius ;
Kutanovas, Simonas ;
Kim, Daehwan ;
Parkinson, Jonathan ;
Dickerson, Kenneth ;
Ripoll, Juan-Jose ;
Peytavi, Regis ;
Lu, Hsiang-Wei ;
Barron, Francie ;
Goldsmith, Brett R. ;
Collins, Philip G. ;
Conboy, Irina M. ;
Siksnys, Virginijus ;
Aran, Kiana .
NATURE BIOMEDICAL ENGINEERING, 2021, 5 (07) :713-725
[4]   CRISPR-Cas12-based detection of SARS-CoV-2 [J].
Broughton, James P. ;
Deng, Xianding ;
Yu, Guixia ;
Fasching, Clare L. ;
Servellita, Venice ;
Singh, Jasmeet ;
Miao, Xin ;
Streithorst, Jessica A. ;
Granados, Andrea ;
Sotomayor-Gonzalez, Alicia ;
Zorn, Kelsey ;
Gopez, Allan ;
Hsu, Elaine ;
Gu, Wei ;
Miller, Steve ;
Pan, Chao-Yang ;
Guevara, Hugo ;
Wadford, Debra A. ;
Chen, Janice S. ;
Chiu, Charles Y. .
NATURE BIOTECHNOLOGY, 2020, 38 (07) :870-+
[5]   Recent Advancements in Enzyme-Based Lateral Flow Immunoassays [J].
Calabria, Donato ;
Calabretta, Maria Maddalena ;
Zangheri, Martina ;
Marchegiani, Elisa ;
Trozzi, Ilaria ;
Guardigli, Massimo ;
Michelini, Elisa ;
Di Nardo, Fabio ;
Anfossi, Laura ;
Baggiani, Claudio ;
Mirasoli, Mara .
SENSORS, 2021, 21 (10)
[6]  
CHAUDRY IH, 1979, SURGERY, V85, P205
[7]   CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity [J].
Chen, Janice S. ;
Ma, Enbo ;
Harrington, Lucas B. ;
Da Costa, Maria ;
Tian, Xinran ;
Palefsky, Joel M. ;
Doudna, Jennifer A. .
SCIENCE, 2018, 360 (6387) :436-+
[8]   Exploring the Trans-Cleavage Activity of CRISPR-Cas12a (cpf1) for the Development of a Universal Electrochemical Biosensor [J].
Dai, Yifan ;
Somoza, Rodrigo A. ;
Wang, Liu ;
Welter, Jean F. ;
Li, Yan ;
Caplan, Arnold I. ;
Liu, Chung Chiun .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (48) :17399-17405
[9]   Minimally instrumented SHERLOCK (miSHERLOCK) for CRISPR-based point-of-care diagnosis of SARS-CoV-2 and emerging variants [J].
de Puig, Helena ;
Lee, Rose A. ;
Najjar, Devora ;
Tan, Xiao ;
Soekensen, Luis R. ;
Angenent-Mari, Nicolaas M. ;
Donghia, Nina M. ;
Weckman, Nicole E. ;
Ory, Audrey ;
Ng, Carlos F. ;
Nguyen, Peter Q. ;
Mao, Angelo S. ;
Ferrante, Thomas C. ;
Lansberry, Geoffrey ;
Sallum, Hani ;
Niemi, James ;
Collins, James J. .
SCIENCE ADVANCES, 2021, 7 (32)
[10]   DNA-Based Nanostructures for Live-Cell Analysis [J].
Ebrahimi, Sasha B. ;
Samanta, Devleena ;
Mirkin, Chad A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (26) :11343-11356