Biomass-Derived 3D Interconnected Porous Carbon-Encapsulated Nano-FeS2 for High-Performance Lithium-Ion Batteries

被引:37
|
作者
Xu, Xin [1 ,2 ]
Ying, Hangjun [1 ]
Zhang, Shunlong [1 ]
Meng, Zhen [2 ]
Yan, Xufeng [1 ]
Han, Wei-Qiang [1 ]
机构
[1] Zhejiang Univ, Sch Mat Sci & Engn, Hangzhou 310027, Peoples R China
[2] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn NIMTE, Ningbo 315201, Peoples R China
基金
中国国家自然科学基金;
关键词
biomass; lotus rhizome starch; hierarchical porous carbon; FeS2; lithium-ion battery; FREESTANDING ANODE; CATHODE MATERIALS; FES2; STARCH; MECHANISM; RHIZOME; PYRITE; ADSORPTION; FES2-AT-C; STORAGE;
D O I
10.1021/acsaem.0c00537
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The application of earth-abundant materials is strategically important for industrial manufacture. Utilizing the gelatinization and metallic complexation properties of lotus rhizome starch, a FeS2/lotus rhizome starch-derived carbon (LRSC) composite was prepared with ultrafine FeS2 particles encapsulated in hierarchically porous carbon. The abundant interconnected macropores and micropores in the LRSC can provide diffusion channels for ions and sufficient space for the volume change of FeS2. Besides, a continuous interconnected carbon matrix remarkably enhances the electrical conductivity of FeS2. Therefore, the hierarchically porous carbon-stabilized FeS2 exhibits significantly improved cycling performance compared to pristine FeS2 and FeS2 combined with glucose-pyrolyzed carbon. The electrochemical capacity of the FeS2/LRSC composite is 923.5 mA h g(-1) with a capacity retention of 90.2% after 100 cycles at 0.5 A g(-1), which is much higher than that of pristine FeS2 (54.6%) and FeS2/C (32.6%). This work offers an approach for designing cost-effective and high-performance electrodes for lithium-ion batteries.
引用
收藏
页码:5589 / 5596
页数:8
相关论文
共 50 条
  • [21] Preparation and electrochemical performance of biomass-derived porous carbon/MoO2@TiO2 composite as anode materials for lithium-ion batteries
    Yang, Lirong
    Niu, Ziru
    Wang, Chunmei
    Liu, Zhigang
    Feng, Xiaoxin
    SOLID STATE IONICS, 2023, 389
  • [22] 3D Structured MoSe2 on Nitrogenous Porous Carbon Composite Anodes for High-Performance Lithium-Ion Battery
    Nagendra, Abharana
    Karmakar, Gourab
    Tyagi, Adish
    Bahadur, Jitendra
    Ruz, Priyanka
    Pathak, Ankita
    Bhattacharyya, Dibyendu
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (17): : 7485 - 7495
  • [23] Zn-MOFs derived porous carbon nanofiber for high performance lithium-ion batteries
    Zheng, Guoxu
    Chen, Minghua
    Zhang, Hongru
    Zhang, Jiawei
    Liang, Xinqi
    Qi, Meili
    Yin, Jinghua
    SURFACE & COATINGS TECHNOLOGY, 2019, 359 : 384 - 389
  • [24] SiOC nanolayer wrapped 3D interconnected graphene sponge as a high-performance anode for lithium ion batteries
    Sang, Zhiyuan
    Zhao, Zhihao
    Su, Dong
    Miao, Peishuang
    Zhang, Fengrui
    Ji, Huiming
    Yan, Xiao
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (19) : 9064 - 9073
  • [25] Natural biomass-derived porous carbons from buckwheat hulls used as anode for lithium-ion batteries
    Yu, Kaifeng
    Zhang, Zhifei
    Liang, Jicai
    Liang, Ce
    DIAMOND AND RELATED MATERIALS, 2021, 119
  • [26] Interconnected Nanoflake Network Derived from a Natural Resource for High-Performance Lithium-Ion Batteries
    Cheng, Fei
    Li, Wen-Cui
    Lu, An-Hui
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (41) : 27843 - 27849
  • [27] Nano-silicon @ soft carbon embedded in graphene scaffold: High-performance 3D free-standing anode for lithium-ion batteries
    Wang, Fei
    Hu, Zhenglong
    Mao, Limin
    Mao, Jian
    JOURNAL OF POWER SOURCES, 2020, 450
  • [28] In situ growth of β-FeOOH on hierarchically porous carbon as anodes for high-performance lithium-ion batteries
    Imtiaz, Muhammad
    Chen, Zhixin
    Zhu, Chengling
    Pan, Hui
    Zada, Imran
    Li, Yao
    Bokhari, Syeda Wishal
    Luan, RuiYing
    Nigar, Salma
    Zhu, Shenmin
    ELECTROCHIMICA ACTA, 2018, 283 : 401 - 409
  • [29] 3D multicore-shell CoSn nanoboxes encapsulated in porous carbon as anode for lithium-ion batteries
    Zhang, Daxu
    Chen, Gen
    Wang, Haoji
    Chen, Long
    Guo, Ziwei
    Wen, Zuxin
    Zhang, Ning
    Liu, Xiaohe
    Ma, Renzhi
    CHINESE CHEMICAL LETTERS, 2022, 33 (08) : 3925 - 3930
  • [30] SnO2 nanorods encapsulated within a 3D interconnected graphene network architecture as high-performance lithium-ion battery anodes
    Xu, Hui
    Wang, Dan
    Zhang, Wei
    Zhu, Jianfeng
    Zhang, Tong
    Guo, Xinli
    Zhang, Yao
    Sun, Zhengming
    Chen, Jian
    SUSTAINABLE ENERGY & FUELS, 2018, 2 (01): : 262 - 270