Multimeric Rhodamine Dye-Induced Aggregation of Silver Nanoparticles for Surface-Enhanced Raman Scattering

被引:9
作者
Bartolowits, Matthew D. [2 ,4 ]
Xin, Meiguo [1 ,5 ]
Petrov, Dino P. [1 ]
Tague, Thomas J., Jr. [3 ]
Davisson, Vincent Jo [1 ]
机构
[1] Purdue Univ, Dept Med Chem & Mol Pharmacol, W Lafayette, IN 47907 USA
[2] Amplified Sci LLC, 1281 Win Hentschel Blvd, W Lafayette, IN 47906 USA
[3] Bruker Opt Inc, 19 Fortune Dr, Billerica, MA 01821 USA
[4] Latham BioPharm Grp, Cambridge, MA USA
[5] Foshan Univ, Dept Food Sci & Engn, Foshan 528000, Guangdong, Peoples R China
关键词
SPECTROSCOPY; QUANTIFICATION; SERS; 6G; IMMUNOASSAY; PROTEINS; PROBE;
D O I
10.1021/acsomega.8b02970
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Isotopic variants of Rhodamine 6G (R6G) have previously been used as a method of multiplexed detection for Surface Enhanced Raman Spectroscopy (SERS), including protein detection and quantification. Challenges exist, however, with producing long-term stable SERS signals with exposure to silver or gold metal surfaces without the use of additional protective coatings of nanomaterials. Here, novel rhodamine "dimers" and "trimers" have been created that demonstrate a higher avidity for metal nanoparticles and induce aggregation to create plasmonic "hotspots" as indicated by enhanced Raman scattering in situ. These aggregates can be formed in a colloid, on surfaces, or membrane substrates such as poly(vinylidene fluoride) for applications in biosciences. The integrity of the materials and Raman signals are maintained for months of time on different substrates. These dye materials should provide avenues for simplified in situ generation of sensors for Raman-based assays especially in settings requiring highly robust performance.
引用
收藏
页码:140 / 145
页数:6
相关论文
共 28 条
[1]   Bi-analyte SERS with isotopically edited dyes [J].
Blackie, E. ;
Le Ru, E. C. ;
Meyer, M. ;
Timmer, M. ;
Burkett, B. ;
Northcote, P. ;
Etchegoin, P. G. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (28) :4147-4153
[2]   Self-Assembly Approach to Multiplexed Surface-Enhanced Raman Spectral-Encoder Beads [J].
Brady, Christina I. ;
Mack, Nathan H. ;
Brown, Leif O. ;
Doorn, Stephen K. .
ANALYTICAL CHEMISTRY, 2009, 81 (17) :7181-7188
[3]   Detection and relative quantification of proteins by surface enhanced Raman using isotopic labels [J].
Deb, Shirshendu K. ;
Davis, Brandon ;
Knudsen, Giselle M. ;
Gudihal, Ravindra ;
Ben-Amotz, Dor ;
Davisson, V. Jo .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (30) :9624-+
[4]   Accurate concentration measurements using surface-enhanced Raman and deuterium exchanged dye pairs [J].
Deb, Shirshendu K. ;
Davis, Brandon ;
Ben-Amotz, Dor ;
Davisson, V. Jo .
APPLIED SPECTROSCOPY, 2008, 62 (09) :1001-1007
[5]  
DONG XZ, 2009, 2009 TRANSM DISTR C, P1
[6]   Direct Cross-Linking of Au/Ag Alloy Nanoparticles into Monolithic Aerogels for Application in Surface-Enhanced Raman Scattering [J].
Gao, Xiaonan ;
Esteves, Richard J. Alan ;
Nahar, Lamia ;
Nowaczyk, Jordan ;
Arachchige, Indika U. .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (20) :13076-13085
[7]   Quantification of Isotope Encoded Proteins in 2-D Gels Using Surface Enhanced Resonance Raman [J].
Knudsen, Giselle M. ;
Davis, Brandon M. ;
Deb, Shirshendu K. ;
Loethen, Yvette ;
Gudihal, Ravindra ;
Perera, Pradeep ;
Ben-Amotz, Dor ;
Davisson, V. Jo .
BIOCONJUGATE CHEMISTRY, 2008, 19 (11) :2212-2220
[8]   Core-Shell Nanoparticle-Enhanced Raman Spectroscopy [J].
Li, Jian-Feng ;
Zhang, Yue-Jiao ;
Ding, Song-Yuan ;
Panneerselvam, Rajapandiyan ;
Tian, Zhong-Qun .
CHEMICAL REVIEWS, 2017, 117 (07) :5002-5069
[9]   Live-Cell Pyrophosphate Imaging by in Situ Hot-Spot Generation [J].
Li, Mingmin ;
Li, Jin ;
Di, Huixia ;
Liu, Huiqiao ;
Liu, Dingbin .
ANALYTICAL CHEMISTRY, 2017, 89 (06) :3532-3537
[10]   The fluorescent cationic dye rhodamine 6G as a probe for membrane potential in bovine aortic endothelial cells [J].
Mandalà, M ;
Serck-Hanssen, G ;
Martino, G ;
Helle, KB .
ANALYTICAL BIOCHEMISTRY, 1999, 274 (01) :1-6