Nanofabrication of High-Resolution Periodic Structures with a Gap Size Below 100 nm by Two-Photon Polymerization

被引:54
作者
Zheng, Lei [1 ,2 ]
Kurselis, Kestutis [1 ,3 ]
El-Tamer, Ayman [2 ,3 ]
Hinze, Ulf [2 ,3 ]
Reinhardt, Carsten [2 ,5 ]
Overmeyer, Ludger [2 ,4 ]
Chichkov, Boris [3 ]
机构
[1] Leibniz Univ Hannover, Lab Nano & Quantum Engn, Schneiderberg 39, D-30167 Hannover, Germany
[2] Laser Zentrum Hannover eV, Hollerithallee 8, D-30419 Hannover, Germany
[3] Leibniz Univ Hannover, Inst Quantum Opt, Welfengarten 1, D-30167 Hannover, Germany
[4] Leibniz Univ Hannover, Inst Transport & Automat Technol, Univ 2, D-30823 Hannover, Germany
[5] Hsch Bremen, Neustadtswall 30, D-28199 Bremen, Germany
来源
NANOSCALE RESEARCH LETTERS | 2019年 / 14卷 / 1期
关键词
Nanofabrication; Two-photon polymerization; Sub-100; nm; Periodic structures; LIGHT;
D O I
10.1186/s11671-019-2955-5
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this paper, approaches for the realization of high-resolution periodic structures with gap sizes at sub-100 nm scale by two-photon polymerization (2PP) are presented. The impact of laser intensity on the feature sizes and surface quality is investigated. The influence of different photosensitive materials on the structure formation is compared. Based on the elliptical geometry character of the voxel, the authors present an idea to realize high-resolution structures with feature sizes less than 100 nm by controlling the laser focus position with respect to the glass substrate. This investigation covers structures fabricated respectively in the plane along and perpendicular to the major axis of voxel. The authors also provide a useful approach to manage the fabrication of proposed periodic structure with a periodic distance of 200 nm and a gap size of 65 nm.
引用
收藏
页数:9
相关论文
共 28 条
[1]   Review of near-field optics and superlenses for sub-diffraction-limited nano-imaging [J].
Adams, Wyatt ;
Sadatgol, Mehdi ;
Guney, Durdu O. .
AIP ADVANCES, 2016, 6 (10)
[2]  
Bharadwaj P., 2009, ADV OPT PHOTON, V1, pL438
[3]   Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization [J].
Burmeister, Frank ;
Steenhusen, Soenke ;
Houbertz, Ruth ;
Zeitner, Uwe D. ;
Nolte, Stefan ;
Tuennermann, Andreas .
JOURNAL OF LASER APPLICATIONS, 2012, 24 (04)
[4]   Two-photon polymerization technique with sub-50 nm resolution by sub-10 fs laser pulses [J].
Emons, Moritz ;
Obata, Kotaro ;
Binhammer, Thomas ;
Ovsianikov, Aleksandr ;
Chichkov, Boris N. ;
Morgner, Uwe .
OPTICAL MATERIALS EXPRESS, 2012, 2 (07) :942-947
[5]   Two-photon fabrication [J].
Farsari, Maria ;
Chichkov, Boris N. .
NATURE PHOTONICS, 2009, 3 (08) :450-452
[6]   Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy [Invited] [J].
Fischer, Joachim ;
Wegener, Martin .
OPTICAL MATERIALS EXPRESS, 2011, 1 (04) :614-624
[7]   Additive-manufacturing of 3D glass-ceramics down to nanoscale resolution [J].
Gailevicius, Darius ;
Padolskyte, Viktorija ;
Mikoliunaite, Lina ;
Sakirzanovas, Simas ;
Juodkazis, Saulius ;
Malinauskas, Mangirdas .
NANOSCALE HORIZONS, 2019, 4 (03) :647-651
[8]   Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size [J].
Gan, Zongsong ;
Cao, Yaoyu ;
Evans, Richard A. ;
Gu, Min .
NATURE COMMUNICATIONS, 2013, 4
[9]   Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator [J].
Gittard, Shaun D. ;
Nguyen, Alexander ;
Obata, Kotaro ;
Koroleva, Anastasia ;
Narayan, Roger J. ;
Chichkov, Boris N. .
BIOMEDICAL OPTICS EXPRESS, 2011, 2 (11) :3167-3178
[10]   65 nm feature sizes using visible wavelength 3-D multiphoton lithography [J].
Haske, Wojciech ;
Chen, Vincent W. ;
Hales, Joel M. ;
Dong, Wenting ;
Barlow, Stephen ;
Marder, Seth R. ;
Perry, Joseph W. .
OPTICS EXPRESS, 2007, 15 (06) :3426-3436