Decoding incidental ovarian lesions: use of texture analysis and machine learning for characterization and detection of malignancy

被引:15
作者
Park, Hyesun [1 ,2 ]
Qin, Lei [1 ,2 ]
Guerra, Pamela [1 ,2 ]
Bay, Camden P. [1 ,2 ]
Shinagare, Atul B. [1 ,2 ]
机构
[1] Brigham & Womens Hosp, Dept Radiol, 450 Brookline Ave, Boston, MA 02215 USA
[2] Dana Farber Canc Inst, 450 Brookline Ave, Boston, MA 02215 USA
关键词
Incidental ovarian lesion; Texture analysis; Machine learning; TUMOR HETEROGENEITY; CT; ULTRASOUND;
D O I
10.1007/s00261-020-02668-3
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose To compare CT texture features of benign and malignant ovarian lesions and to build a machine learning model to detect malignancy in incidental ovarian lesions. Methods In this IRB-approved, HIPAA-compliant, retrospective study, 427 consecutive patients with incidental ovarian lesions detected on contrast-enhanced CT (348, 81.5% benign and 79, 18.5% malignant) were included. The following CT texture features were analyzed using commercially available software (TexRAD, Feedback Plc, Cambridge, UK): total pixel, mean, standard deviation (SD), entropy, mean value of positive pixels (MPP), skewness, kurtosis and entropy. Three machine learning models were created by combining texture features and patients' age, and performance of these models was assessed using tenfold cross-validation. Receiver operating characteristics (ROC) were constructed to assess sensitivity and specificity. The cutoff value was picked using a cost-weighted method. Results Total pixels, mean, SD, entropy, MPP, and skewness were significantly different between benign and malignant groups (p < 0.05). With a selected 10 as a cost factor to optimize cutoff value selection, sensitivity 92%, specificity 60% in the random forest (RF) model, sensitivity 91%, specificity 69% in SVM model, and sensitivity 92%, specificity 61% in the logistic regression, respectively. Conclusion CT texture analysis could provide objective imaging analysis of incidental ovarian lesions and ML models using CT texture features and age demonstrated high sensitivity and moderate specificity for detection of malignant lesions.
引用
收藏
页码:2376 / 2383
页数:8
相关论文
共 31 条
[1]   Ovarian Tissue Characterization in Ultrasound: A Review [J].
Acharya, U. Rajendra ;
Molinari, Filippo ;
Sree, S. Vinitha ;
Swapna, G. ;
Saba, Luca ;
Guerriero, Stefano ;
Suri, Jasjit S. .
TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2015, 14 (03) :251-261
[2]   Ovarian Tumor Characterization and Classification Using Ultrasound-A New Online Paradigm [J].
Acharya, U. Rajendra ;
Sree, S. Vinitha ;
Saba, Luca ;
Molinari, Filippo ;
Guerriero, Stefano ;
Suri, Jasjit S. .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (03) :544-553
[3]   O-RADS US Risk Stratification and Management System: A Consensus Guideline from the ACR Ovarian-Adnexal Reporting and Data System Committee [J].
Andreotti, Rochelle F. ;
Timmerman, Dirk ;
Strachowski, Lori M. ;
Froyman, Wouter ;
Benacerraf, Beryl R. ;
Bennett, Genevieve L. ;
Bourne, Tom ;
Brown, Douglas L. ;
Coleman, Beverly G. ;
Frates, Mary C. ;
Goldstein, Steven R. ;
Hamper, Ulrike H. ;
Horrow, Mindy M. ;
Hernanz-Schulman, Marta ;
Reinhold, Caroline ;
Rose, Stephen L. ;
Whitcomb, Brad P. ;
Wolfman, Wendy L. ;
Glanc, Phyllis .
RADIOLOGY, 2020, 294 (01) :168-185
[4]   Integration of proteomics with CT-based qualitative and radiomic features in high-grade serous ovarian cancer patients: an exploratory analysis [J].
Beer, Lucian ;
Sahin, Hilal ;
Bateman, Nicholas W. ;
Blazic, Ivana ;
Vargas, Hebert Alberto ;
Veeraraghavan, Harini ;
Kirby, Justin ;
Fevrier-Sullivan, Brenda ;
Freymann, John B. ;
Jaffe, C. Carl ;
Brenton, James ;
Micco, Maura ;
Nougaret, Stephanie ;
Darcy, Kathleen M. ;
Maxwell, G. Larry ;
Conrads, Thomas P. ;
Huang, Erich ;
Sala, Evis .
EUROPEAN RADIOLOGY, 2020, 30 (08) :4306-4316
[5]   Ovarian Cancer: Prevalence in Incidental Simple Adnexal Cysts Initially Identified in CT Examinations of the Abdomen and Pelvis [J].
Boos, Johannes ;
Brook, Olga R. ;
Fang, Jieming ;
Brook, Alexander ;
Levine, Deborah .
RADIOLOGY, 2018, 286 (01) :196-204
[6]   CT texture analysis in patients with locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy: A potential imaging biomarker for treatment response and prognosis [J].
Chee, Choong Guen ;
Kim, Young Hoon ;
Lee, Kyoung Ho ;
Lee, Yoon Jin ;
Park, Ji Hoon ;
Lee, Hye Seung ;
Ahn, Soyeon ;
Kim, Bohyoung .
PLOS ONE, 2017, 12 (08)
[7]   Assessment of tumor heterogeneity: An emerging imaging tool for clinical practice? [J].
Davnall F. ;
Yip C.S.P. ;
Ljungqvist G. ;
Selmi M. ;
Ng F. ;
Sanghera B. ;
Ganeshan B. ;
Miles K.A. ;
Cook G.J. ;
Goh V. .
Insights into Imaging, 2012, 3 (6) :573-589
[8]   Computed tomography-based texture analysis of bladder cancer: differentiating urothelial carcinoma from micropapillary carcinoma [J].
Fan, Ting-wei ;
Malhi, Harshawn ;
Varghese, Bino ;
Cen, Steve ;
Hwang, Darryl ;
Aron, Manju ;
Rajarubendra, Nieroshan ;
Desai, Mihir ;
Duddalwar, Vinay .
ABDOMINAL RADIOLOGY, 2019, 44 (01) :201-208
[9]   ESUR recommendations for MR imaging of the sonographically indeterminate adnexal mass: an update [J].
Forstner, Rosemarie ;
Thomassin-Naggara, Isabelle ;
Cunha, Teresa Margarida ;
Kinkel, Karen ;
Masselli, Gabriele ;
Kubik-Huch, Rahel ;
Spencer, John A. ;
Rockall, Andrea .
EUROPEAN RADIOLOGY, 2017, 27 (06) :2248-2257
[10]   Quantitative imaging to evaluate malignant potential of IPMNs [J].
Hanania, Alexander N. ;
Bantis, Leonidas E. ;
Feng, Ziding ;
Wang, Huamin ;
Tamm, Eric P. ;
Katz, Matthew H. ;
Maitra, Anirban ;
Koay, Eugene J. .
ONCOTARGET, 2016, 7 (52) :85776-85784