Topologies on central extensions of von Neumann algebras

被引:0
作者
Ayupov, Shavkat A. [1 ,2 ]
Kudaybergenov, Karimbergen K. [3 ]
Djumamuratov, Rauaj T. [3 ]
机构
[1] Uzbek Acad Sci, Inst Math & Informat Technol, Dept Algebra & Anal, Tashkent 100125, Uzbekistan
[2] Abdus Salam Int Ctr Theoret Phys, I-34151 Trieste, Italy
[3] Karakalpak State Univ, Dept Math, Nukus 230113, Uzbekistan
来源
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS | 2012年 / 10卷 / 02期
关键词
von Neumann algebras; Central extensions; Local measure topology; MEASURABLE OPERATORS; DERIVATIONS;
D O I
10.2478/s11533-011-0136-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a von Neumann algebra M, we consider the central extension E(M) of M. We introduce the topology t(c)(M) on E(M) generated by a center-valued norm and prove that it coincides with the topology of local convergence in measure on E(M) if and only if M does not have direct summands of type II. We also show that t(c)(M) restricted to the set E(M)(h) of self-adjoint elements of E(M) coincides with the order topology on E(M)(h) if and only if M is a sigma-finite type I-fin von Neumann algebra.
引用
收藏
页码:656 / 664
页数:9
相关论文
共 11 条
  • [1] Structure of derivations on various algebras of measurable operators for type I von Neumann algebras
    Albeverio, S.
    Ayupov, Sh. A.
    Kudaybergenov, K. K.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (09) : 2917 - 2943
  • [2] Albeverio S., STUDIA MATH IN PRESS
  • [3] ALBEVERIO S, 2008, SIBERIAN ADV MATH, V18, P86
  • [4] DERIVATIONS ON ALGEBRAS OF MEASURABLE OPERATORS
    Ayupov, Sh. A.
    Kudaybergenov, K. K.
    [J]. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2010, 13 (02) : 305 - 337
  • [5] Ayupov Sh.A., J OPERATOR IN PRESS
  • [6] Muratov MA, 2009, UKR MATH J, V61, P1798
  • [7] Muratov M.A., 2009, REPORTS NATL ACAD SC, V7, P24
  • [8] Muratov M.A., 2007, P I MATH UKRAINIAN A, V69
  • [9] Sarymsakov T. A., 1983, ORDERED ALGEBRAS
  • [10] A NON-COMMUTATIVE EXTENSION OF ABSTRACT INTEGRATION
    SEGAL, IE
    [J]. ANNALS OF MATHEMATICS, 1953, 57 (03) : 401 - 457