Convergence of the Iterative Rational Krylov Algorithm

被引:35
作者
Flagg, Garret [1 ]
Beattie, Christopher [1 ]
Gugercin, Serkan [1 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
关键词
Rational Krylov; H-2; approximation; Interpolation; MODEL-REDUCTION; APPROXIMATION;
D O I
10.1016/j.sysconle.2012.03.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The iterative rational Krylov algorithm (IRKA) of Gugercin et al. (2008) [8] is an interpolatory model reduction approach to the optimal H-2 approximation problem. Even though the method has been illustrated to show rapid convergence in various examples, a proof of convergence has not been provided yet. In this note, we show that in the case of state-space-symmetric systems. IRKA is a locally convergent fixed-point iteration to a local minimum of the underlying H-2 approximation problem. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:688 / 691
页数:4
相关论文
共 22 条
[1]  
Antoulas. A. C., 2005, Adv. Des. Control
[2]  
Beattie C., 48 IEEE C DEC CONTR
[3]  
Beattie C. A., 2007, 46 IEEE C DEC CONTR, P4385
[4]   SOLUTION OF LARGE SCALE EVOLUTIONARY PROBLEMS USING RATIONAL KRYLOV SUBSPACES WITH OPTIMIZED SHIFTS [J].
Druskin, Vladimir ;
Knizhnerman, Leonid ;
Zaslavsky, Mikhail .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (05) :3760-3780
[5]   Matrix rational H2 approximation:: A gradient algorithm based on schur analysis [J].
Fulcheri, P ;
Olivi, M .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 36 (06) :2103-2127
[6]  
Grimme E. J., 1997, Krylov projection methods for model reduction
[7]   H2 MODEL REDUCTION FOR LARGE-SCALE LINEAR DYNAMICAL SYSTEMS [J].
Gugercin, S. ;
Antoulas, A. C. ;
Beattie, C. .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (02) :609-638
[8]  
Gugercin S., 2005, HOUS S 16 7 SPRINGS
[9]  
Kellems A., 2009, J COMPUTATIONAL NEUR, V27, P16
[10]  
Krajewski W., 1995, Numerical Algorithms, V9, P355, DOI 10.1007/BF02141596