High Temperature Silicon Carbide Power Modules for High Performance Systems

被引:2
|
作者
Lostetter, A. B. [1 ]
Hornberger, J. [1 ]
McPherson, B. [1 ]
Bourne, J. [1 ]
Shaw, R. [1 ]
Cilio, E. [1 ]
Cilio, W. [1 ]
Reese, B. [1 ]
Heinrichs, E. [1 ]
McNutt, T. [1 ]
Schupbach, M. [1 ]
机构
[1] Arkansas Power Elect Int Inc, Fayetteville, AR 72701 USA
来源
SILICON CARBIDE AND RELATED MATERIALS 2011, PTS 1 AND 2 | 2012年 / 717-720卷
关键词
Power module; High power; Low parasitic; Hermetically sealed; High performance; High reliability;
D O I
10.4028/www.scientific.net/MSF.717-720.1219
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The demands of modern high-performance power electronics systems are rapidly surpassing the power density, efficiency, and reliability limitations defined by the intrinsic properties of silicon-based semiconductors. The advantages of silicon carbide (SiC) are well known, including high temperature operation, high voltage blocking capability, high speed switching, and high energy efficiency. In this discussion, APEI, Inc. presents two newly developed high performance SiC power modules for extreme environment systems and applications. These power modules are rated to 1200V, are operational at currents greater than 100A, can perform at temperatures in excess of 250 degrees C, and are designed to house various SiC devices, including MOSFETs, JFETs, or BJTs.
引用
收藏
页码:1219 / 1224
页数:6
相关论文
共 50 条
  • [1] Silicon Carbide Power Modules for High-Temperature Applications
    Palmer, Michael J.
    Johnson, R. Wayne
    Autry, Tracy
    Aguirre, Rizal
    Lee, Victor
    Scofield, James D.
    IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2012, 2 (02): : 208 - 216
  • [2] High Current (>1000A), High Temperature (>200 degrees C) Silicon Carbide Trench MOSFET (TMOS) Power Modules for High Performance Systems
    McPherson, Brice R.
    Shaw, Robert
    Hornberger, Jared
    Lostetter, Alex
    Schupbach, Roberto
    Reese, Brad
    McNutt, Ty
    Otsuka, Takukazu
    Nakano, Yuki
    Nakamura, Takashi
    SAE INTERNATIONAL JOURNAL OF PASSENGER CARS-ELECTRONIC AND ELECTRICAL SYSTEMS, 2013, 6 (01): : 10 - 17
  • [3] High-Temperature Silicon Carbide and Silicon on Insulator Based Integrated Power Modules
    Lostetter, A.
    Hornberger, J.
    McPherson, B.
    Reese, B.
    Shaw, R.
    Schupbach, M.
    Rowden, B.
    Mantooth, A.
    Balda, J.
    Otsuka, T.
    Okumura, K.
    Miura, M.
    2009 IEEE VEHICLE POWER AND PROPULSION CONFERENCE, VOLS 1-3, 2009, : 909 - 912
  • [4] Direct Liquid Cooling of High Performance Silicon Carbide (SiC) Power Modules
    McPherson, Brice
    McGee, Brad
    Simco, David
    Olejniczak, Kraig
    Passmore, Brandon
    2017 IEEE INTERNATIONAL WORKSHOP ON INTEGRATED POWER PACKAGING (IWIPP), 2017,
  • [5] Improved Methodology for Parasitic Analysis of High-Performance Silicon Carbide Power Modules
    DeBoi, Brian T.
    Lemmon, Andrew N.
    McPherson, Brice
    Passmore, Brandon
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (10) : 12415 - 12425
  • [6] Silicon carbide devices for high power high temperature applications
    Johnson, M
    ELECTRONIC ENGINEERING, 1997, 69 (852): : 47 - 48
  • [7] Miniature Piezoelectric Sensor for In-Situ Temperature Monitoring of Silicon and Silicon Carbide Power Modules Operating at High Temperature
    Kim, Min Ki
    Yoon, Sang Won
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2018, 54 (02) : 1614 - 1621
  • [8] Evaluation of gold and aluminum wire bond performance for high temperature (500 °C) silicon carbide (SiC) power modules
    Mustain, HA
    Lostetter, AB
    Browns, WD
    55th Electronic Components & Technology Conference, Vols 1 and 2, 2005 Proceedings, 2005, : 1623 - 1628
  • [9] Silicon carbide power electronics for high temperature applications
    Shenai, K
    Trivedi, M
    2000 IEEE AEROSPACE CONFERENCE PROCEEDINGS, VOL 5, 2000, : 431 - 437
  • [10] Simulation of silicon carbide power MOSFETs at high temperature
    Shams, SF
    Sundaram, KB
    Chow, LC
    SOLID-STATE ELECTRONICS, 1999, 43 (02) : 367 - 374