Implementing Scientific Simulations on GPU-accelerated Edge Devices

被引:0
|
作者
Lim, Sungmin [1 ]
Kang, Pilsung [1 ]
机构
[1] Sun Moon Univ, Div Comp Sci & Engn, Asan, South Korea
来源
2020 34TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN 2020) | 2020年
基金
新加坡国家研究基金会;
关键词
edge computing; GPU (graphics processing unit); scientific computing; stochastic simulation algorithm; STOCHASTIC SIMULATION;
D O I
10.1109/icoin48656.2020.9016467
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we investigate the potentials of the state-of-the-art edge devices in the context of scientific computing. We implement one of the major scientific applications - stochastic simulation in biochemistry - on a small cluster of modern, GPU-accelerated edge systems. By comparing the performance of the edge implementation with that of a real-world stochastic simulation software package on a multi-core desktop system, we evaluate the computational capability and estimate the usefulness of the modern hardware-accelerated edge devices.
引用
收藏
页码:756 / 760
页数:5
相关论文
共 50 条
  • [1] Benchmarking GPU-Accelerated Edge Devices
    Jo, Jongmin
    Jeong, Sucheol
    Kang, Pilsung
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP 2020), 2020, : 117 - 120
  • [2] A Taste of Scientific Computing on the GPU-Accelerated Edge Device
    Kang, Pilsung
    Lim, Sungmin
    IEEE ACCESS, 2020, 8 (08): : 208337 - 208347
  • [3] GPU-Accelerated Photonic Simulations
    Flexcompute, Watertown
    MA, United States
    不详
    WI, United States
    不详
    不详
    CA, United States
    Opt. Photonics News, 2024, (44-50):
  • [4] GPU-accelerated simulations of isolated black holes
    Lewis, Adam G. M.
    Pfeiffer, Harald P.
    CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (09)
  • [5] GPU-Accelerated Task Execution in Heterogeneous Edge Environments
    Schaefer, Dominik
    Edinger, Janick
    Becker, Christian
    2018 27TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND NETWORKS (ICCCN), 2018,
  • [6] GPU-accelerated micromagnetic simulations using cloud computing
    Jermain, C. L.
    Rowlands, G. E.
    Buhrman, R. A.
    Ralph, D. C.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2016, 401 : 320 - 322
  • [7] A GPU-accelerated shallow flow model for tsunami simulations
    Amouzgar, Reza
    Liang, Qiuhua
    Smith, Luke
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-ENGINEERING AND COMPUTATIONAL MECHANICS, 2014, 167 (03) : 117 - 125
  • [8] Larger GPU-accelerated brain simulations with procedural connectivity
    Knight, James C.
    Nowotny, Thomas
    NATURE COMPUTATIONAL SCIENCE, 2021, 1 (02): : 136 - 142
  • [9] Larger GPU-accelerated brain simulations with procedural connectivity
    James C. Knight
    Thomas Nowotny
    Nature Computational Science, 2021, 1 : 136 - 142
  • [10] Modeling of electromechanical devices by GPU-accelerated integral formulation
    Musolino, Antonino
    Rizzo, Rocco
    Tripodi, Ernesto
    Toni, Michele
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2013, 26 (04) : 376 - 396