A Geometric Framework for Discrete Hamilton-Jacobi Equation

被引:5
作者
Barbero-Linan, M. [1 ]
Delgado-Tellez, M. [2 ]
de Diego, D. Martin [1 ]
机构
[1] CSIC UAM UC3M UCM, Inst Ciencias Matemat, C Nicolas Cabrera 13-15, Madrid 28049, Spain
[2] Univ Politecn Madrid, E-28040 Madrid, Spain
来源
XX INTERNATIONAL FALL WORKSHOP ON GEOMETRY AND PHYSICS | 2012年 / 1460卷
关键词
Hamilton-Jacobi equation; Lagrangian submanifolds; discrete dynamics;
D O I
10.1063/1.4733374
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In classical mechanics the Hamilton-Jacobi Equation is useful to integrate partially or completely Hamilton's equations [2]. Recent developments have provided this theory with an intrinsic formulation, see for instance [3]. Another branch in mechanics that has been studied from a geometric viewpoint is discrete lagrangian and hamiltonian mechanics [5, 6]. In this contribution we aim to mingle those two theories to describe the discrete Hamilton-Jacobi Equation. This has already started to be studied in the literature [7], but not intrinsically. We will show here that the use of Lagrangian submanifolds [8] creates the natural setting to describe geometrically the discrete Hamilton-Jacobi equation.
引用
收藏
页码:164 / 168
页数:5
相关论文
共 9 条
[1]  
Abraham R., 1978, Foundations of Mechanics
[2]  
Arnold V. I., 1978, Mathematical methods of classical mechanics
[3]   Geometric Hamilton-Jacobi theory [J].
Carinena, Jose F. ;
Gracia, Xavier ;
Marmo, Giuseppe ;
Martinez, Eduardo ;
Munoz-Lecanda, Miguel C. ;
Roman-Roy, Narciso .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (07) :1417-1458
[4]  
Iglesias D., 2011, DISCRETE CO IN PRESS
[5]   Discrete variational Hamiltonian mechanics [J].
Lall, S. ;
West, M. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (19) :5509-5519
[6]  
Marsden JE, 2001, ACT NUMERIC, V10, P357, DOI 10.1017/S096249290100006X
[7]   DISCRETE HAMILTON-JACOBI THEORY [J].
Ohsawa, Tomoki ;
Bloch, Anthony M. ;
Leok, Melvin .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2011, 49 (04) :1829-1856
[8]  
TULCZYJEW WM, 1976, CR ACAD SCI A MATH, V283, P675
[9]   SYMPLECTIC MANIFOLDS AND THEIR LAGRANGIAN SUBMANIFOLDS [J].
WEINSTEIN, A .
ADVANCES IN MATHEMATICS, 1971, 6 (03) :329-+