ON THE HYERS-ULAM STABILITY OF SEXTIC FUNCTIONAL EQUATIONS IN β-HOMOGENEOUS PROBABILISTIC MODULAR SPACES

被引:9
作者
Cho, Yeol Je [1 ,2 ]
Ghaemi, Mohammad Bagher [3 ]
Choubin, Mehdi [4 ]
Gordji, Madjid Eshaghi [5 ]
机构
[1] Gyeongsang Natl Univ, Dept Math Educ, Chinju 660701, South Korea
[2] Gyeongsang Natl Univ, RINS, Chinju 660701, South Korea
[3] Iran Univ Sci & Technol, Dept Math, Tehran, Iran
[4] Payame Noor Univ, Dept Math, Tehran, Iran
[5] Semnan Univ, Dept Math, Semnan, Iran
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2013年 / 16卷 / 04期
基金
新加坡国家研究基金会;
关键词
Fixed point method; Hyers-Ulam stability; modular spaces; sextic functional equation; RASSIAS STABILITY;
D O I
10.7153/mia-16-85
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present a fixed point method to prove the generalized Hyers-Ulam stability of the systems of additive-quadratic-cubic functional equations with constant coefficients in beta-homogeneous probabilistic modular spaces.
引用
收藏
页码:1097 / 1114
页数:18
相关论文
共 68 条
[11]   Solutions and Stability of Generalized Mixed Type QC Functional Equations in Random Normed Spaces [J].
Cho, Yeol Je ;
Gordji, Madjid Eshaghi ;
Zolfaghari, Somaye .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,
[12]   ON THE STABILITY OF THE QUADRATIC MAPPING IN NORMED SPACES [J].
CZERWIK, S .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1992, 62 :59-64
[13]   A fixed point method for perturbation of bimultipliers and Jordan bimultipliers in C*-ternary algebras [J].
Ebadian, A. ;
Ghobadipour, N. ;
Gordji, M. Eshaghi .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (10)
[14]   On Approximate Additive-Quartic and Quadratic-Cubic Functional Equations in Two Variables on Abelian Groups [J].
Ebadian, A. ;
Najati, A. ;
Gordji, M. Eshaghi .
RESULTS IN MATHEMATICS, 2010, 58 (1-2) :39-53
[15]  
ESHAGHI GORDJI M., DISCRETE DYNAMICS NA, V2011
[16]   Probabilistic Modular Spaces and Linear Operators [J].
Fallahi, Kamal ;
Nourouzi, Kourosh .
ACTA APPLICANDAE MATHEMATICAE, 2009, 105 (02) :123-140
[17]  
Gajda Z., 1991, Internat. J. Math. Math. Sci., V14, P431, DOI [10.1155/S016117129100056X, DOI 10.1155/S016117129100056X]
[18]   A GENERALIZATION OF THE HYERS-ULAM-RASSIAS STABILITY OF APPROXIMATELY ADDITIVE MAPPINGS [J].
GAVRUTA, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :431-436
[19]  
Gavruta P, 2010, INT J NONLINEAR ANAL, V1, P11
[20]  
GORDJI M. E., ADV DIFFER EQUAT, V2009