ON THE HYERS-ULAM STABILITY OF SEXTIC FUNCTIONAL EQUATIONS IN β-HOMOGENEOUS PROBABILISTIC MODULAR SPACES

被引:9
作者
Cho, Yeol Je [1 ,2 ]
Ghaemi, Mohammad Bagher [3 ]
Choubin, Mehdi [4 ]
Gordji, Madjid Eshaghi [5 ]
机构
[1] Gyeongsang Natl Univ, Dept Math Educ, Chinju 660701, South Korea
[2] Gyeongsang Natl Univ, RINS, Chinju 660701, South Korea
[3] Iran Univ Sci & Technol, Dept Math, Tehran, Iran
[4] Payame Noor Univ, Dept Math, Tehran, Iran
[5] Semnan Univ, Dept Math, Semnan, Iran
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2013年 / 16卷 / 04期
基金
新加坡国家研究基金会;
关键词
Fixed point method; Hyers-Ulam stability; modular spaces; sextic functional equation; RASSIAS STABILITY;
D O I
10.7153/mia-16-85
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present a fixed point method to prove the generalized Hyers-Ulam stability of the systems of additive-quadratic-cubic functional equations with constant coefficients in beta-homogeneous probabilistic modular spaces.
引用
收藏
页码:1097 / 1114
页数:18
相关论文
共 68 条
[1]  
Aczel J., 1989, ENCY MATH APPL, V31
[2]  
[Anonymous], 1964, PROBLEMS MODERN MATH
[3]  
[Anonymous], 1999, TOPOLOGICAL ALGEBRAS
[4]  
[Anonymous], 1984, AEQUATIONES MATH
[5]  
[Anonymous], PREPRINT
[6]  
[Anonymous], 2003, JIPAM J INEQUAL PURE
[7]  
[Anonymous], 1998, Stability of Functional Equations in Several Variables
[8]  
[Anonymous], J INEQUAL APPL
[9]  
Aoki T., 1950, J MATH SOC JAPAN, V2, P64, DOI [10.2969/jmsj/00210064, DOI 10.2969/JMSJ/00210064]
[10]   Lattictic non-archimedean random stability of ACQ functional equation [J].
Cho, Yeol Je ;
Saadati, Reza .
ADVANCES IN DIFFERENCE EQUATIONS, 2011,