On multivariate linear regression shrinkage and reduced-rank procedures

被引:4
作者
Reinsel, GC [1 ]
机构
[1] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
关键词
canonical correlation analysis; multivariate regression; prediction mean square error; reduced rank; shrinkage;
D O I
10.1016/S0378-3758(99)00016-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An alternate derivation of the canonical analysis shrinkage prediction procedure of Breiman and Friedman (1997. J. Roy. Statist. Sec. B 59, 3-54) is presented for the multivariate linear model. It is based on consideration of prediction mean square error matrix, and bias of the squared sample canonical correlations. A modified procedure involving partial canonical correlation analysis is also introduced and discussed. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:311 / 321
页数:11
相关论文
共 50 条
[31]   Shrinkage estimation for the regression parameter matrix in multivariate regression model [J].
Chitsaz, Shabnam ;
Ahmed, S. Ejaz .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2012, 82 (02) :309-323
[32]   Source enumeration in reduced-rank reference techniques for source extraction [J].
Albezzawy, Muhammad N. ;
Antoni, Jerome ;
Leclere, Quentin .
JOURNAL OF SOUND AND VIBRATION, 2025, 615
[33]   Reduced-rank adaptive detection of distributed sources using subarrays [J].
Jin, YW ;
Friedlander, B .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (01) :13-25
[34]   A REDUCED-RANK APPROACH TO SINGLE-CHANNEL NOISE REDUCTION [J].
Zhang, Wei ;
Chen, Jingdong ;
Benesty, Jacob .
2014 14TH INTERNATIONAL WORKSHOP ON ACOUSTIC SIGNAL ENHANCEMENT (IWAENC), 2014, :293-297
[35]   Properties of the partial Cholesky factorization and application to reduced-rank adaptive beamforming [J].
Besson, Olivier ;
Vincent, Francois .
SIGNAL PROCESSING, 2020, 167
[36]   An analytical shrinkage estimator for linear regression [J].
Lassance, Nathan .
STATISTICS & PROBABILITY LETTERS, 2023, 194
[37]   Robust Direction-Adaptive Based Reduced-Rank Beamforming Algorithm [J].
Wang, Rui ;
Li, Sheng ;
He, Xiongxiong ;
Zhang, Duan ;
Li, Gang .
PROCEEDINGS OF THE 2014 9TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2014, :2061-2064
[38]   On the weighted multivariate Wilcoxon rank regression estimate [J].
Zhou, Weihua ;
Wang, Jin .
STATISTICS & PROBABILITY LETTERS, 2011, 81 (06) :704-713
[39]   Blind reduced-rank MMSE detector for DS-CDMA systems [J].
Cai, XD ;
Ge, HY ;
Akansu, AN .
EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2002, 2002 (12) :1365-1376
[40]   A note on rank reduction in sparse multivariate regression [J].
Chen K. ;
Chan K.-S. .
Journal of Statistical Theory and Practice, 2016, 10 (1) :100-120