Improved least squares identification algorithm for multivariable Hammerstein systems

被引:95
作者
Wang, Dongqing [1 ]
Zhang, Wei [1 ]
机构
[1] Qingdao Univ, Coll Automat Engn, Qingdao 266071, Peoples R China
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2015年 / 352卷 / 11期
基金
中国国家自然科学基金;
关键词
ITERATIVE ESTIMATION ALGORITHMS; NONLINEAR-SYSTEMS; PARAMETER-ESTIMATION; SUBSPACE IDENTIFICATION; FILTERING TECHNIQUE; PRINCIPLE; BACKLASH; LPV;
D O I
10.1016/j.jfranklin.2015.09.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The multivariable Hammerstein output error moving average (OEMA) system consists of parallel nonlinear blocks interconnected with a linear OEMA block. Its identification model, which is not a regression form, contains a sum of some bilinear functions about the parameter vectors of the nonlinear part and the linear part. By using the Taylor expansion on a least squares quadratic criterion function, this paper investigates an improved least squares algorithm to identify the parameters of the multivariable Hammerstein OEMA system. The parameter vector is defined as a unified vector of all parameter vectors in the non-regression model of this system; the information vector is defined as the derivative of the noise variable to the unified parameter vector. Numerical simulations indicate that the proposed algorithm is capable of generating accurate parameter estimates, and easy to implement on-line. (C) 2015 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:5292 / 5307
页数:16
相关论文
共 36 条
[1]   Identification of MIMO Hammerstein systems using cardinal spline functions [J].
Chan, Kwong Ho ;
Bao, Jie ;
Whiten, William J. .
JOURNAL OF PROCESS CONTROL, 2006, 16 (07) :659-670
[2]   Hierarchical gradient parameter estimation algorithm for Hammerstein nonlinear systems using the key term separation principle [J].
Chen, Huibo ;
Xiao, Yongsong ;
Ding, Feng .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 247 :1202-1210
[3]   Newton iterative identification method for an input nonlinear finite impulse response system with moving average noise using the key variables separation technique [J].
Deng, Kepo ;
Ding, Feng .
NONLINEAR DYNAMICS, 2014, 76 (02) :1195-1202
[4]   Hierarchical least squares identification methods for multivariable systems [J].
Ding, F ;
Chen, TW .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (03) :397-402
[5]   Recursive least squares parameter identification algorithms for systems with colored noise using the filtering technique and the auxilary model [J].
Ding, Feng ;
Wang, Yanjiao ;
Ding, Jie .
DIGITAL SIGNAL PROCESSING, 2015, 37 :100-108
[6]   Hierarchical estimation algorithms for multivariable systems using measurement information [J].
Ding, Feng .
INFORMATION SCIENCES, 2014, 277 :396-405
[7]   Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling [J].
Ding, Feng .
APPLIED MATHEMATICAL MODELLING, 2013, 37 (04) :1694-1704
[8]   Identification methods for Hammerstein nonlinear systems [J].
Ding, Feng ;
Liu, Xiaoping Peter ;
Liu, Guangjun .
DIGITAL SIGNAL PROCESSING, 2011, 21 (02) :215-238
[9]   Subspace identification of MIMO LPV systems using a periodic scheduling sequence [J].
Felici, Federico ;
van Wingerden, Jan-Willem ;
Verhaegen, Michel .
AUTOMATICA, 2007, 43 (10) :1684-1697
[10]  
Giri F, 2010, LECT NOTES CONTR INF, V404, P1, DOI 10.1007/978-1-84996-513-2