Littlewood-Richardson coefficients;
hive model;
polynomial time algorithm;
flows in networks;
SCHUBERT CALCULUS;
HONEYCOMB MODEL;
COMPLEXITY;
D O I:
10.1137/120892532
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Starting with Knutson and Tao's hive model [J. Amer. Math. Soc., 12 (1999), pp. 1055-1090] we characterize the Littlewood-Richardson coefficient c(lambda)(nu),(mu) of given partitions lambda, mu, nu is an element of N-n as the number of capacity achieving hive flows on the honeycomb graph. Based on this, we design a polynomial time algorithm for deciding c(lambda)(nu),(mu) > 0. This algorithm is easy to state and takes O(n(3) log nu(1)) arithmetic operations and comparisons. We further show that the capacity achieving hive flows can be seen as the vertices of a connected graph, which leads to new structural insights into Littlewood-Richardson coefficients.
机构:
UFR Sci & Tech, CNRS, UMR 6629, Lab Math Jean Leray, F-44322 Nantes 03, France
Max Planck Inst Math, D-53111 Bonn, GermanyUFR Sci & Tech, CNRS, UMR 6629, Lab Math Jean Leray, F-44322 Nantes 03, France
Chaput, P. -E.
Perrin, N.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bonn, Hausdorff Ctr Math, D-53115 Bonn, Germany
Univ Paris 06, Inst Math Jussieu, F-75252 Paris 05, FranceUFR Sci & Tech, CNRS, UMR 6629, Lab Math Jean Leray, F-44322 Nantes 03, France