DECIDING POSITIVITY OF LITTLEWOOD-RICHARDSON COEFFICIENTS

被引:19
|
作者
Buergisser, Peter [1 ]
Ikenmeyer, Christian [1 ]
机构
[1] Univ Paderborn, Inst Math, D-33098 Paderborn, Germany
关键词
Littlewood-Richardson coefficients; hive model; polynomial time algorithm; flows in networks; SCHUBERT CALCULUS; HONEYCOMB MODEL; COMPLEXITY;
D O I
10.1137/120892532
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Starting with Knutson and Tao's hive model [J. Amer. Math. Soc., 12 (1999), pp. 1055-1090] we characterize the Littlewood-Richardson coefficient c(lambda)(nu),(mu) of given partitions lambda, mu, nu is an element of N-n as the number of capacity achieving hive flows on the honeycomb graph. Based on this, we design a polynomial time algorithm for deciding c(lambda)(nu),(mu) > 0. This algorithm is easy to state and takes O(n(3) log nu(1)) arithmetic operations and comparisons. We further show that the capacity achieving hive flows can be seen as the vertices of a connected graph, which leads to new structural insights into Littlewood-Richardson coefficients.
引用
收藏
页码:1639 / 1681
页数:43
相关论文
共 33 条
  • [21] THE SYMMETRY OF LITTLEWOOD-RICHARDSON COEFFICIENTS: A NEW HIVE MODEL INVOLUTORY BIJECTION
    Terada, I
    King, R. C.
    Azenhas, O.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (04) : 2850 - 2899
  • [22] A product formula for certain Littlewood-Richardson coefficients for Jack and Macdonald polynomials
    Naqvi, Yusra
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2016, 44 (03) : 603 - 643
  • [23] A Littlewood-Richardson rule for Koornwinder polynomials
    Yamaguchi, Kohei
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 56 (02) : 335 - 381
  • [24] Vanishing of Littlewood-Richardson polynomials is in P
    Adve, Anshul
    Robichaux, Colleen
    Yong, Alexander
    COMPUTATIONAL COMPLEXITY, 2019, 28 (02) : 241 - 257
  • [25] Extremal rays of the equivariant Littlewood-Richardson cone
    Kiers, Joshua
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (03):
  • [26] WHY SHOULD THE LITTLEWOOD-RICHARDSON RULE BE TRUE?
    Howe, Roger
    Lee, Soo Teck
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 49 (02) : 187 - 236
  • [27] Geometric realization of PRV components and the Littlewood-Richardson cone
    Dimitrov, Ivan
    Roth, Mike
    SYMMETRY IN MATHEMATICS AND PHYSICS, 2009, 490 : 83 - 95
  • [28] NUMERICAL SCHUBERT CALCULUS VIA THE LITTLEWOOD-RICHARDSON HOMOTOPY ALGORITHM
    Leykin, Anton
    del Campo, Abraham Martin
    Sottile, Frank
    Vakil, Ravi
    Verschelde, Jan
    MATHEMATICS OF COMPUTATION, 2021, 90 (329) : 1407 - 1433
  • [29] A NEW LITTLEWOOD-RICHARDSON RULE FOR SCHUR P-FUNCTIONS
    Cho, Soojin
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (02) : 939 - 972
  • [30] ADMISSIBLE PICTURES AND Uq(gl(m, n))-LITTLEWOOD-RICHARDSON TABLEAUX
    Jung, Ji Hye
    Kang, Seok-Jin
    Lyoo, Young-Wook
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (03) : 1169 - 1181