Gland and Zonal Segmentation of Prostate on T2W MR Images

被引:25
作者
Chilali, O. [1 ,2 ]
Puech, P. [1 ,3 ]
Lakroum, S. [1 ]
Diaf, M. [2 ]
Mordon, S. [1 ]
Betrouni, N. [1 ]
机构
[1] Univ Lille, INSERM, U1189, ONCO THAI,Image Assisted Laser Therapy Oncol, F-59000 Lille, France
[2] Mouloud Mammeri Univ, Automat Dept, Tizi Ouzou, Algeria
[3] CHRU Lille, Claude Huriez Hosp, Dept Radiol, F-59000 Lille, France
关键词
Prostate; MRT2W images; Segmentation; Zones; Atlas; CANCERS;
D O I
10.1007/s10278-016-9890-0
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
For many years, prostate segmentation on MR images concerned only the extraction of the entire gland. Currently, in the focal treatment era, there is a continuously increasing need for the separation of the different parts of the organ. In this paper, we propose an automatic segmentation method based on the use of T2W images and atlas images to segment the prostate and to isolate the peripheral and transition zones. The algorithm consists of two stages. First, the target image is registered with each zonal atlas image then the segmentation is obtained by the application of an evidential C-Means clustering. The method was evaluated on a representative and multi-centric image base and yielded mean Dice accuracy values of 0.81, 0.70, and 0.62 for the prostate, the transition zone, and peripheral zone, respectively.
引用
收藏
页码:730 / 736
页数:7
相关论文
共 14 条
  • [1] ProstAtlas: A digital morphologic atlas of the prostate
    Betrouni, N.
    Iancu, A.
    Puech, P.
    Mordon, S.
    Makni, N.
    [J]. EUROPEAN JOURNAL OF RADIOLOGY, 2012, 81 (09) : 1969 - 1975
  • [2] EVCLUS: Evidential clustering of proximity data
    Denoeux, T
    Masson, MH
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2004, 34 (01): : 95 - 109
  • [3] Peripheral Zone Prostate Cancers: Location and Intraprostatic Patterns of Spread at Histopathology
    Haffner, Jeremie
    Potiron, Eric
    Bouye, Sebastien
    Puech, Philippe
    Leroy, Xavier
    Lemaitre, Laurent
    Villers, Arnauld
    [J]. PROSTATE, 2009, 69 (03) : 276 - 282
  • [4] Jing Yuan, 2013, Energy Minimization Methods in Computer Vision and Pattern Recognition. 9th International Conference, EMMCVPR 2013. Proceedings. LNCS 8081, P12, DOI 10.1007/978-3-642-40395-8_2
  • [5] Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge
    Litjens, Geert
    Toth, Robert
    van de Ven, Wendy
    Hoeks, Caroline
    Kerkstra, Sjoerd
    van Ginneken, Bram
    Vincent, Graham
    Guillard, Gwenael
    Birbeck, Neil
    Zhang, Jindang
    Strand, Robin
    Malmberg, Filip
    Ou, Yangming
    Davatzikos, Christos
    Kirschner, Matthias
    Jung, Florian
    Yuan, Jing
    Qiu, Wu
    Gao, Qinquan
    Edwards, Philip Eddie
    Maan, Bianca
    van der Heijden, Ferdinand
    Ghose, Soumya
    Mitra, Jhimli
    Dowling, Jason
    Barratt, Dean
    Huisman, Henkjan
    Madabhushi, Anant
    [J]. MEDICAL IMAGE ANALYSIS, 2014, 18 (02) : 359 - 373
  • [6] Litjens G, 2012, LECT NOTES COMPUT SC, V7511, P413, DOI 10.1007/978-3-642-33418-4_51
  • [7] Maan B., 2012, P SOC PHOTO-OPT INS, V8314, P1
  • [8] Zonal segmentation of prostate using multispectral magnetic resonance images
    Makni, N.
    Iancu, A.
    Colot, O.
    Puech, P.
    Mordon, S.
    Betrouni, N.
    [J]. MEDICAL PHYSICS, 2011, 38 (11) : 6093 - 6105
  • [9] Combining a deformable model and a probabilistic framework for an automatic 3D segmentation of prostate on MRI
    Makni, Nasr
    Puech, P.
    Lopes, R.
    Dewalle, A. S.
    Colot, O.
    Betrouni, N.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2009, 4 (02) : 181 - 188
  • [10] ECM:: An evidential version of the fuzzy c-means algorithm
    Masson, Marie-Helene
    Denoeux, T.
    [J]. PATTERN RECOGNITION, 2008, 41 (04) : 1384 - 1397