The Marginal Enumeration Bayesian Cramer-Rao Bound for Jump Markov Systems

被引:7
|
作者
Fritsche, Carsten [1 ]
Orguner, Umut [2 ]
Svensson, Lennart [3 ]
Gustafsson, Fredrik [4 ]
机构
[1] IFEN GmbH, D-85586 Poing, Germany
[2] Middle E Tech Univ, Dept Elect & Elect Engn, TR-06531 Ankara, Turkey
[3] Chalmers Univ Technol, Dept Signals & Syst, S-41296 Gothenburg, Sweden
[4] Linkoping Univ, Dept Elect Engn, Div Automat Control, SE-58183 Linkoping, Sweden
关键词
Jump markov systems; performance bounds; statistical signal processing; PERFORMANCE; FILTER;
D O I
10.1109/LSP.2014.2305115
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A marginal version of the enumeration Bayesian Cramer-Rao Bound (EBCRB) for jump Markov systems is proposed. It is shown that the proposed bound is at least as tight as EBCRB and the improvement stems from better handling of the nonlinearities. The new bound is illustrated to yield tighter results than BCRB and EBCRB on a benchmark example.
引用
收藏
页码:464 / 468
页数:5
相关论文
共 50 条
  • [31] Cramer-Rao Bound Evaluations of Compton Imager Designs for Proton Beam Range Verification
    Shy, Daniel
    Fessler, Jeffrey A.
    Polf, Jerimy C.
    He, Zhong
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2022, 6 (06) : 731 - 739
  • [32] Cramer-Rao lower bound with Pd < 1 for target localisation accuracy in multistatic passive radar
    Anastasio, Valeria
    Farina, Alfonso
    Colone, Fabiola
    Lombardo, Pierfrancesco
    IET RADAR SONAR AND NAVIGATION, 2014, 8 (07) : 767 - 775
  • [33] Cramer-Rao lower bound on range error for LADARs with Geiger-mode avalanche photodiodes
    Johnson, Steven E.
    APPLIED OPTICS, 2010, 49 (24) : 4581 - 4590
  • [34] Cramer-Rao Bound for Estimation After Model Selection and Its Application to Sparse Vector Estimation
    Meir, Elad
    Routtenberg, Tirza
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 2284 - 2301
  • [35] Cramer-Rao bound and signal-to-noise ratio gain in distributed coherent aperture radar
    Sun, Peilin
    Tang, Jun
    Tang, Xiaowei
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2014, 25 (02) : 217 - 225
  • [36] Cramer-Rao Bound for Lie Group Parameter Estimation With Euclidean Observations and Unknown Covariance Matrix
    Labsir, Samy
    El Bouch, Sara
    Renaux, Alexandre
    Vila-Valls, Jordi
    Chaumette, Eric
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2025, 73 : 130 - 141
  • [37] Deterministic Cramer-Rao Bound for Strictly Non-Circular Sources and Analytical Analysis of the Achievable Gains
    Steinwandt, Jens
    Roemer, Florian
    Haardt, Martin
    Del Galdo, Giovanni
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (17) : 4417 - 4431
  • [38] Generalized Cramer-Rao Bound for Joint Estimation of Target Position and Velocity for Active and Passive Radar Networks
    He, Qian
    Hu, Jianbin
    Blum, Rick S.
    Wu, Yonggang
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (08) : 2078 - 2089
  • [39] Statistical resolution limit for the multidimensional harmonic retrieval model: hypothesis test and Cramer-Rao Bound approaches
    El Korso, Mohammed Nabil
    Boyer, Remy
    Renaux, Alexandre
    Marcos, Sylvie
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2011,
  • [40] Cramer-Rao Bound Analysis of Underdetermined Wideband DOA Estimation Under the Subband Model via Frequency Decomposition
    Liang, Yibao
    Cui, Wei
    Shen, Qing
    Liu, Wei
    Wu, Siliang
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 4132 - 4148