The Marginal Enumeration Bayesian Cramer-Rao Bound for Jump Markov Systems

被引:7
|
作者
Fritsche, Carsten [1 ]
Orguner, Umut [2 ]
Svensson, Lennart [3 ]
Gustafsson, Fredrik [4 ]
机构
[1] IFEN GmbH, D-85586 Poing, Germany
[2] Middle E Tech Univ, Dept Elect & Elect Engn, TR-06531 Ankara, Turkey
[3] Chalmers Univ Technol, Dept Signals & Syst, S-41296 Gothenburg, Sweden
[4] Linkoping Univ, Dept Elect Engn, Div Automat Control, SE-58183 Linkoping, Sweden
关键词
Jump markov systems; performance bounds; statistical signal processing; PERFORMANCE; FILTER;
D O I
10.1109/LSP.2014.2305115
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A marginal version of the enumeration Bayesian Cramer-Rao Bound (EBCRB) for jump Markov systems is proposed. It is shown that the proposed bound is at least as tight as EBCRB and the improvement stems from better handling of the nonlinearities. The new bound is illustrated to yield tighter results than BCRB and EBCRB on a benchmark example.
引用
收藏
页码:464 / 468
页数:5
相关论文
共 50 条
  • [21] Phase Noise in MIMO Systems: Bayesian Cramer-Rao Bounds and Soft-Input Estimation
    Nasir, Ali A.
    Mehrpouyan, Hani
    Schober, Robert
    Hua, Yingbo
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (10) : 2675 - 2692
  • [22] Joint Cramer-Rao Lower Bound for Nonlinear Parametric Systems With Cross-Correlated Noises
    Li, Xianqing
    Duan, Zhansheng
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 977 - 981
  • [23] Cramer-Rao Bound Analysis for Passive Multistatic Radar Using UMTS Signals
    Gogineni, Sandeep
    Rangaswamy, Muralidhar
    Rigling, Brian
    Nehorai, Arye
    2014 IEEE RADAR CONFERENCE, 2014, : 769 - 773
  • [24] Cramer-Rao lower bound calculations for image registration using simulated phenomenology
    Tyler, David W.
    Dank, Jeffrey A.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2015, 32 (08) : 1425 - 1436
  • [25] Cramer-Rao Lower Bound Analysis for Elliptic Localization With Random Sensor Placements
    He, Jiajun
    Ho, Dominic K. C.
    Xiong, Wenxin
    So, Hing Cheung
    Chun, Young Jin
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2024, 60 (04) : 5587 - 5595
  • [26] Stochastic Cramer-Rao Bound for DOA Estimation With a Mixture of Circular and Noncircular Signals
    Cai, Jingjing
    Liang, Yibao
    Liu, Wei
    Dong, Yang-Yang
    IEEE ACCESS, 2020, 8 : 226370 - 226379
  • [27] On the Joint Impact of Hardware and Channel Imperfections on Cognitive Spatial Modulation MIMO Systems: Cramer-Rao Bound Approach
    Afana, Ali
    Abu-Ali, Najah
    Ikki, Salama
    IEEE SYSTEMS JOURNAL, 2019, 13 (02): : 1250 - 1261
  • [28] Cramer-Rao bound of joint estimation of target location and velocity for coherent MIMO radar
    Sun, Peilin
    Tang, Jun
    Wan, Shuang
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2014, 25 (04) : 566 - 572
  • [29] Cramer-Rao Bound for DOA Estimators Under the Partial Relaxation Framework: Derivation and Comparison
    Trinh-Hoang Minh
    Viberg, Mats
    Pesavento, Marius
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 3194 - 3208
  • [30] An enhanced Cramer-Rao bound weighted method for attitude accuracy improvement of a star tracker
    Zhang, Jun
    Wang, Jian
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (06)