The Marginal Enumeration Bayesian Cramer-Rao Bound for Jump Markov Systems

被引:7
|
作者
Fritsche, Carsten [1 ]
Orguner, Umut [2 ]
Svensson, Lennart [3 ]
Gustafsson, Fredrik [4 ]
机构
[1] IFEN GmbH, D-85586 Poing, Germany
[2] Middle E Tech Univ, Dept Elect & Elect Engn, TR-06531 Ankara, Turkey
[3] Chalmers Univ Technol, Dept Signals & Syst, S-41296 Gothenburg, Sweden
[4] Linkoping Univ, Dept Elect Engn, Div Automat Control, SE-58183 Linkoping, Sweden
关键词
Jump markov systems; performance bounds; statistical signal processing; PERFORMANCE; FILTER;
D O I
10.1109/LSP.2014.2305115
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A marginal version of the enumeration Bayesian Cramer-Rao Bound (EBCRB) for jump Markov systems is proposed. It is shown that the proposed bound is at least as tight as EBCRB and the improvement stems from better handling of the nonlinearities. The new bound is illustrated to yield tighter results than BCRB and EBCRB on a benchmark example.
引用
收藏
页码:464 / 468
页数:5
相关论文
共 50 条
  • [1] The Marginal Bayesian Cramer-Rao Bound for Jump Markov Systems
    Fritsche, Carsten
    Gustafsson, Fredrik
    IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (05) : 575 - U10
  • [2] Recent Results on Bayesian Cramer-Rao Bounds for Jump Markov Systems
    Fritsche, Carsten
    Orguner, Umut
    Svensson, Lennart
    Gustafsson, Fredrik
    2016 19TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2016, : 512 - 520
  • [3] On the Bayesian Cramer-Rao Bound for Markovian Switching Systems
    Svensson, Lennart
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (09) : 4507 - 4516
  • [4] Asymptotically Tight Bayesian Cramer-Rao Bound
    Aharon, Ori
    Tabrikian, Joseph
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 3333 - 3346
  • [5] Bayesian Periodic Cramer-Rao Bound
    Routtenberg, Tirza
    Tabrikian, Joseph
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1878 - 1882
  • [6] Non-Bayesian Periodic Cramer-Rao Bound
    Routtenberg, Tirza
    Tabrikian, Joseph
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (04) : 1019 - 1032
  • [7] GEOMETRY OF THE CRAMER-RAO BOUND
    SCHARF, LL
    MCWHORTER, LT
    SIGNAL PROCESSING, 1993, 31 (03) : 301 - 311
  • [8] Evaluating the Bayesian Cramer-Rao Bound for multiple model filtering
    Svensson, Lennart
    FUSION: 2009 12TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, 2009, : 1775 - 1782
  • [9] Intrinsic Bayesian Cramer-Rao Bound With an Application to Covariance Matrix Estimation
    Bouchard, Florent
    Renaux, Alexandre
    Ginolhac, Guillaume
    Breloy, Arnaud
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (12) : 9261 - 9276
  • [10] Cramer-Rao Bound for Convolutional Beamspace Method
    Chen, Po-Chih
    Vaidyanathan, P. P.
    FIFTY-SEVENTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, IEEECONF, 2023, : 1288 - 1292