Geometrical Structure of Laplacian Eigenfunctions

被引:240
作者
Grebenkov, D. S. [1 ,2 ,3 ]
Nguyen, B. -T. [1 ]
机构
[1] Ecole Polytech, CNRS, Lab Phys Matiere Condensee, F-91128 Palaiseau, France
[2] CNRS Independent Univ Moscow, Lab Poncelet, Moscow 119002, Russia
[3] St Petersburg State Univ, Chebyshev Lab, St Petersburg 199034, Russia
关键词
Laplace operator; eigenfunctions; eigenvalues; localization; TIME-DEPENDENT DIFFUSION; QUANTUM WAVE-GUIDES; PARTIAL-DIFFERENTIAL-EQUATIONS; SINGULARLY PERTURBED DOMAIN; NEUMANN BOUNDARY-CONDITIONS; GROUND-STATE EIGENFUNCTION; HEAT-CONTENT ASYMPTOTICS; INVERSE SPECTRAL PROBLEM; WEYL-BERRY CONJECTURE; CONVEX PLANE POLYGONS;
D O I
10.1137/120880173
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We summarize the properties of eigenvalues and eigenfunctions of the Laplace operator in bounded Euclidean domains with Dirichlet, Neumann, or Robin boundary condition. We keep the presentation at a level accessible to scientists from various disciplines ranging from mathematics to physics and computer sciences. The main focus is placed onto multiple intricate relations between the shape of a domain and the geometrical structure of eigenfunctions.
引用
收藏
页码:601 / 667
页数:67
相关论文
共 515 条