Splitting formulas for Tutte polynomials

被引:15
作者
Andrzejak, A
机构
[1] ETH Zürich, Departement Informatik, ETH Zentrum
关键词
D O I
10.1006/jctb.1997.1767
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present two splitting formulas for calculating the Tutte polynomial of a matroid. The first one is for a generalized parallel connection across a 3-point line of two matroids and the second one is applicable to a 3-sum of two matroids. An important tool used is the bipointed Tutte polynomial of a matroid, an extension of the pointed Tutte polynomial introduced by Brylawski. (C) 1997 Academic Press.
引用
收藏
页码:346 / 366
页数:21
相关论文
共 9 条
[1]   COMBINATORIAL MODEL FOR SERIES-PARALLEL NETWORKS [J].
BRYLAWSKI, T .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 154 (FEB) :1-+
[2]  
BRYLAWSKI TH, 1991, MATROID THEORY JAEG, P123
[3]   ON THE COMPUTATIONAL-COMPLEXITY OF THE JONES AND TUTTE POLYNOMIALS [J].
JAEGER, F ;
VERTIGAN, DL ;
WELSH, DJA .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1990, 108 :35-53
[4]   POLYNOMIAL INVARIANTS OF GRAPHS [J].
NEGAMI, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 299 (02) :601-622
[5]  
Oxley J., 1993, MATROID THEORY
[6]   TUTTE POLYNOMIALS COMPUTABLE IN POLYNOMIAL-TIME [J].
OXLEY, JG ;
WELSH, DJA .
DISCRETE MATHEMATICS, 1992, 109 (1-3) :185-192
[7]  
OXLEY JG, 1995, COMMUNICATION APR
[8]   DECOMPOSITION OF REGULAR MATROIDS [J].
SEYMOUR, PD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1980, 28 (03) :305-359
[9]  
WELSH DJA, 1993, LONDON MATH SOC LECT, V186