Direct geometric probe of singularities in band structure

被引:15
作者
Brown, Charles D. [1 ,2 ,4 ]
Chang, Shao-Wen [1 ,2 ]
Schwarz, Malte N. [1 ,2 ]
Leung, Tsz-Him [1 ,2 ]
Kozii, Vladyslav [1 ,3 ,5 ]
Avdoshkin, Alexander [1 ]
Moore, Joel E. [1 ,3 ]
Stamper-Kurn, Dan [1 ,2 ,3 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Challenge Inst Quantum Computat, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[4] Yale Univ, Dept Phys, New Haven, CT 06520 USA
[5] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA
关键词
CONICAL INTERSECTIONS; PHASE; DYNAMICS;
D O I
10.1126/science.abm6442
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A quantum system's energy landscape may have points where multiple energy surfaces are degenerate and that exhibit singular geometry of the wave function manifold, with major consequences for the system's properties. Ultracold atoms in optical lattices have been used to indirectly characterize such points in the band structure. We measured the non-Abelian transformation produced by transport directly through the singularities. We accelerated atoms along a quasi-momentum trajectory that enters, turns, and then exits the singularities at linear and quadratic band-touching points of a honeycomb lattice. Measurements after transport identified the topological winding numbers of these singularities to be 1 and 2, respectively. Our work introduces a distinct method for probing singularities that enables the study of non-Dirac singularities in ultracold-atom quantum simulators.
引用
收藏
页码:1319 / 1322
页数:4
相关论文
共 33 条
[1]  
[Anonymous], 2003, The geometric phase in quantum systems, DOI DOI 10.1007/978-3-662-10333-36
[2]   Colloquium: Topological band theory [J].
Bansil, A. ;
Lin, Hsin ;
Das, Tanmoy .
REVIEWS OF MODERN PHYSICS, 2016, 88 (02)
[4]  
Brown C. D., 2022, DATASET DIRECT GEOME
[5]   Role of Conical Intersections in Molecular Spectroscopy and Photoinduced Chemical Dynamics [J].
Domcke, Wolfgang ;
Yarkony, David R. .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 63, 2012, 63 :325-352
[6]   An Aharonov-Bohm interferometer for determining Bloch band topology [J].
Duca, L. ;
Li, T. ;
Reitter, M. ;
Bloch, I. ;
Schleier-Smith, M. ;
Schneider, U. .
SCIENCE, 2015, 347 (6219) :288-292
[7]   Experimental reconstruction of the Berry curvature in a Floquet Bloch band [J].
Flaeschner, N. ;
Rem, B. S. ;
Tarnowski, M. ;
Vogel, D. ;
Luehmann, D. -S. ;
Sengstock, K. ;
Weitenberg, C. .
SCIENCE, 2016, 352 (6289) :1091-1094
[8]   Landau levels in twisted bilayer graphene and semiclassical orbits [J].
Hejazi, Kasra ;
Liu, Chunxiao ;
Balents, Leon .
PHYSICAL REVIEW B, 2019, 100 (03)
[9]   Multiple topological transitions in twisted bilayer graphene near the first magic angle [J].
Hejazi, Kasra ;
Liu, Chunxiao ;
Shapourian, Hassan ;
Chen, Xiao ;
Balents, Leon .
PHYSICAL REVIEW B, 2019, 99 (03)
[10]   Wave-function geometry of band crossing points in two dimensions [J].
Hwang, Yoonseok ;
Jung, Junseo ;
Rhim, Jun-Won ;
Yang, Bohm-Jung .
PHYSICAL REVIEW B, 2021, 103 (24)