Characterizations of Sobolev spaces in Euclidean spaces and Heisenberg groups

被引:7
|
作者
Cui Xiao-yue [1 ]
Lam Nguyen [1 ]
Lu Guo-zhen [1 ]
机构
[1] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
关键词
characterization of Sobelev spaces; Folland-Stein space; Poincare inequalities; Heisenberg group; second order Sobolev space; INTERPOLATION INEQUALITIES; EMBEDDING-THEOREMS; STRATIFIED GROUPS; REPRESENTATION; DEFINITIONS; POLYNOMIALS; CONNECTIONS; FORMULAS;
D O I
10.1007/s11766-013-3226-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, many new features of Sobolev spaces W (k,p) (a"e (N) ) were studied in [4-6, 32]. This paper is devoted to giving a brief review of some known characterizations of Sobolev spaces in Euclidean spaces and describing our recent study of new characterizations of Sobolev spaces on both Heisenberg groups and Euclidean spaces obtained in [12] and [13] and outlining their proofs. Our results extend those characterizations of first order Sobolev spaces in [32] to the Heisenberg group setting. Moreover, our theorems also provide different characterizations for the second order Sobolev spaces in Euclidean spaces from those in [4, 5].
引用
收藏
页码:531 / 547
页数:17
相关论文
共 50 条
  • [41] Groups of Rotations of Euclidean and Hyperbolic Spaces
    Beardon, A. F.
    Minda, D.
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2023, 23 (02) : 295 - 301
  • [42] Euclidean groups in spaces of arbitrary dimensions
    Kopsky, Vojtech
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2011, 67 : C332 - C332
  • [43] Groups of Rotations of Euclidean and Hyperbolic Spaces
    A. F. Beardon
    D. Minda
    Computational Methods and Function Theory, 2023, 23 : 295 - 301
  • [44] Levy Processes in Euclidean Spaces and Groups
    Applebaum, David
    QUANTUM INDEPENDENT INCREMENT PROCESSES I: FROM CLASSICAL PROBABILITY TO QUANTUM STOCHASTIC CALCULUS, 2005, 1865 : 1 - 98
  • [45] SOBOLEV SPACES ON GRADED LIE GROUPS
    Fischer, Veronique
    Ruzhansky, Michael
    ANNALES DE L INSTITUT FOURIER, 2017, 67 (04) : 1671 - 1723
  • [46] CONVEX TOPOLOGY IN GROUPS + EUCLIDEAN SPACES
    GLADYSZ, S
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1964, 12 (01): : 1 - &
  • [47] Heisenberg Model in Pseudo-Euclidean Spaces II
    Božidar Jovanović
    Vladimir Jovanović
    Regular and Chaotic Dynamics, 2018, 23 : 418 - 437
  • [48] Heisenberg Model in Pseudo-Euclidean Spaces II
    Jovanovic, Bozidar
    Jovanovic, Vladimir
    REGULAR & CHAOTIC DYNAMICS, 2018, 23 (04): : 418 - 437
  • [49] The trace problem for Sobolev spaces over the Heisenberg group
    François Vigneron
    Journal d'Analyse Mathématique, 2007, 103 : 279 - 306
  • [50] Heisenberg uniqueness pairs on the Euclidean spaces and the motion group
    Chattopadhyay, Arup
    Ghosh, S.
    Giri, D. K.
    Srivastava, R. K.
    COMPTES RENDUS MATHEMATIQUE, 2020, 358 (03) : 365 - 377