Application of Artificial Intelligence in Early Diagnosis of Spontaneous Preterm Labor and Birth

被引:38
|
作者
Lee, Kwang-Sig [1 ]
Ahn, Ki Hoon [2 ]
机构
[1] Korea Univ, Anam Hosp, AI Ctr, Seoul 02841, South Korea
[2] Korea Univ, Anam Hosp, Dept Obstet & Gynecol, Seoul 02841, South Korea
关键词
preterm birth; early diagnosis; artificial intelligence; GASTROESOPHAGEAL-REFLUX DISEASE; DIABETES-MELLITUS; RISK; PERIODONTITIS; ASSOCIATION; PREDICTION; WOMEN;
D O I
10.3390/diagnostics10090733
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
This study reviews the current status and future prospective of knowledge on the use of artificial intelligence for the prediction of spontaneous preterm labor and birth ("preterm birth" hereafter). The summary of review suggests that different machine learning approaches would be optimal for different types of data regarding the prediction of preterm birth: the artificial neural network, logistic regression and/or the random forest for numeric data; the support vector machine for electrohysterogram data; the recurrent neural network for text data; and the convolutional neural network for image data. The ranges of performance measures were 0.79-0.94 for accuracy, 0.22-0.97 for sensitivity, 0.86-1.00 for specificity, and 0.54-0.83 for the area under the receiver operating characteristic curve. The following maternal variables were reported to be major determinants of preterm birth: delivery and pregestational body mass index, age, parity, predelivery systolic and diastolic blood pressure, twins, below high school graduation, infant sex, prior preterm birth, progesterone medication history, upper gastrointestinal tract symptom, gastroesophageal reflux disease, Helicobacter pylori, urban region, calcium channel blocker medication history, gestational diabetes mellitus, prior cone biopsy, cervical length, myomas and adenomyosis, insurance, marriage, religion, systemic lupus erythematosus, hydroxychloroquine sulfate, and increased cerebrospinal fluid and reduced cortical folding due to impaired brain growth.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Artificial Neural Network Analysis of Spontaneous Preterm Labor and Birth and Its Major Determinants
    Lee, Kwang-Sig
    Ahn, Ki Hoon
    JOURNAL OF KOREAN MEDICAL SCIENCE, 2019, 34 (16)
  • [2] A new model based on artificial intelligence to screening preterm birth
    de Andrade Junior, Valter Lacerda
    Franca, Marcelo Santucci
    Santos, Roberto Angelo Fernandes
    Hatanaka, Alan Roberto
    Cruz, Jader de Jesus
    Hamamoto, Tatiana Emy Kawanami
    Traina, Evelyn
    Sarmento, Stephanno Gomes Pereira
    Elito Junior, Julio
    Pares, David Baptista da Silva
    Mattar, Rosiane
    Araujo Junior, Edward
    Moron, Antonio Fernandes
    JOURNAL OF MATERNAL-FETAL & NEONATAL MEDICINE, 2023, 36 (02)
  • [3] Prediction of preterm birth using artificial intelligence: a systematic review
    Akazawa, Munetoshi
    Hashimoto, Kazunori
    JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2022, 42 (06) : 1662 - 1668
  • [4] Determinants of Spontaneous Preterm Labor and Birth Including Gastroesophageal Reflux Disease and Periodontitis
    Lee, Kwang-Sig
    Song, In-Seok
    Kim, Eun-Seon
    Ahn, Ki Hoon
    JOURNAL OF KOREAN MEDICAL SCIENCE, 2020, 35 (14)
  • [5] Association Between Features of Spontaneous Late Preterm Labor and Late Preterm Birth
    Glover, Angelica V.
    Battarbee, Ashley N.
    Gyamfi-Bannerman, Cynthia
    Boggess, Kim A.
    Sandoval, Grecio
    Blackwell, Sean C.
    Tita, Alan T. N.
    Reddy, Uma M.
    Jain, Lucky
    Saade, George R.
    Rouse, Dwight J.
    Iams, Jay D.
    Clark, Erin A. S.
    Chien, Edward K.
    Peaceman, Alan M.
    Gibbs, Ronald S.
    Swamy, Geeta K.
    Norton, Mary E.
    Casey, Brian M.
    Caritis, Steve N.
    Tolosa, Jorge E.
    Sorokin, Yoram
    Manuck, Tracy A.
    AMERICAN JOURNAL OF PERINATOLOGY, 2020, 37 (04) : 357 - 364
  • [6] Comment on: Guidelines for the management of spontaneous preterm labor: identification of spontaneous preterm labor, diagnosis of preterm premature rupture of membranes and preventive tools for preterm birth
    Rutanen, Eeva-Marja
    JOURNAL OF MATERNAL-FETAL & NEONATAL MEDICINE, 2012, 25 (05) : 546 - 547
  • [7] Artificial Intelligence (AI) for Early Diagnosis of Retinal Diseases
    Parmar, Uday Pratap Singh
    Surico, Pier Luigi
    Singh, Rohan Bir
    Romano, Francesco
    Salati, Carlo
    Spadea, Leopoldo
    Musa, Mutali
    Gagliano, Caterina
    Mori, Tommaso
    Zeppieri, Marco
    MEDICINA-LITHUANIA, 2024, 60 (04):
  • [8] Comment on: Guidelines for the management of spontaneous preterm labor: identification of spontaneous preterm labor, diagnosis of preterm premature rupture of membranes and preventive tools for preterm birth reply
    Di Renzo, Gian Carlo
    Roura, Lluis Cabero
    Facchinetti, Fabio
    JOURNAL OF MATERNAL-FETAL & NEONATAL MEDICINE, 2012, 25 (05) : 547 - 549
  • [9] Diabetes mellitus and the risk of preterm birth with regard to the risk of spontaneous preterm birth
    Koeck, Katharina
    Koeck, Florian
    Klein, Katharina
    Bancher-Todesca, Dagmar
    Helmer, Hanns
    JOURNAL OF MATERNAL-FETAL & NEONATAL MEDICINE, 2010, 23 (09) : 1004 - 1008
  • [10] The Role of Artificial Intelligence in Early Cancer Diagnosis
    Hunter, Benjamin
    Hindocha, Sumeet
    Lee, Richard W.
    CANCERS, 2022, 14 (06)