Silicon/Polyaniline Nanocomposites as Anode Material for Lithium Ion Batteries

被引:66
作者
Kummer, M. [1 ]
Badillo, J. P. [2 ]
Schmitz, A. [2 ]
Bremes, H. -G. [2 ]
Winter, M. [2 ]
Schulz, C. [1 ,3 ]
Wiggers, H. [1 ,3 ]
机构
[1] Univ Duisburg Essen, Inst Combust & Gas Dynam React Fluids IVG, D-47057 Duisburg, Germany
[2] Univ Munster, Inst Phys Chem, MEET, D-48149 Munster, Germany
[3] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen CENIDE, D-47057 Duisburg, Germany
关键词
TIN-BASED INTERMETALLICS; POLYANILINE; ELECTROLYTE; CARBONATE; INSERTION; PERFORMANCE; INTERFACE; STABILITY; CAPACITY; STORAGE;
D O I
10.1149/2.020401jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Due to of its high Li storage capacity, silicon is a promising anode material for lithium ion batteries. Unfortunately, this high specific capacity leads to extreme volume expansion of about 300% during lithiation and delithiation, that may lead to mechanical disintegration of the electrode and poor cycle life. To improve the cycling behavior, we combined nano-silicon (n-Si) active material with an inactive material that acts as a binder and buffering matrix. Stability, flexibility and conductivity are the main requirements for such matrix material. Polyaniline (PANi), a conducting polymer, meets all these requirements. With a theoretical capacity of 643 mAh g(-1), the prepared n-Si/PANi sample showed a higher capacity in respect to the commonly used anode material, graphite. The electrochemical performance of the n-Si/PANi composite is stable compared to the performance of nano-silicon without PANi. After 300 cycles the composite still retains more than 60% of its theoretical capacity. (C) 2013 The Electrochemical Society. All rights reserved.
引用
收藏
页码:A40 / A45
页数:6
相关论文
共 44 条
[1]   Aqueous Dispersions of DBSA-Doped Polyaniline: One-Pot Preparation, Characterization, and Properties Study [J].
Babazadeh, Mirzaagha .
JOURNAL OF APPLIED POLYMER SCIENCE, 2009, 113 (06) :3980-3984
[2]  
Besenhard J. O., 1997, J POWER SOURCES, V1, P187
[3]   Kinetics of Li insertion into polycrystalline and nanocrystalline 'SnSb' alloys investigated by transient and steady state techniques [J].
Besenhard, JO ;
Wachtler, M ;
Winter, M ;
Andreaus, R ;
Rom, I ;
Sitte, W .
JOURNAL OF POWER SOURCES, 1999, 81 :268-272
[4]   Insertion reactions in advanced electrochemical energy storage [J].
Besenhard, JO ;
Winter, M .
PURE AND APPLIED CHEMISTRY, 1998, 70 (03) :603-608
[5]   ALL-SOLID LITHIUM ELECTRODES WITH MIXED-CONDUCTOR MATRIX [J].
BOUKAMP, BA ;
LESH, GC ;
HUGGINS, RA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1981, 128 (04) :725-729
[6]   Nano-silicon/polyaniline composite for lithium storage [J].
Cai, Jie-Jian ;
Zuo, Peng-Jian ;
Cheng, Xin-Qun ;
Xu, Yu-Hong ;
Yin, Ge-Ping .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (11) :1572-1575
[7]  
Chen M, 2012, INT J ELECTROCHEM SC, V7, P819
[8]   Highly reversible lithium storage in nanostructured silicon [J].
Graetz, J ;
Ahn, CC ;
Yazami, R ;
Fultz, B .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (09) :A194-A197
[9]   Electrical properties of aluminum-doped zinc oxide (AZO) nanoparticles synthesized by chemical vapor synthesis [J].
Hartner, Sonja ;
Ali, Moazzam ;
Schulz, Christof ;
Winterer, Markus ;
Wiggers, Hartmut .
NANOTECHNOLOGY, 2009, 20 (44)
[10]   Silicon/graphite composite electrodes for high-capacity anodes:: Influence of binder chemistry on cycling stability [J].
Hochgatterer, N. S. ;
Schweiger, M. R. ;
Koller, S. ;
Raimann, P. R. ;
Woehrle, T. ;
Wurm, C. ;
Winter, M. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (05) :A76-A80