Rapid measurement of substrate temperatures by frequency-domain low-coherence interferometry

被引:13
|
作者
Tsutsumi, Takayoshi [1 ]
Ohta, Takayuki [2 ]
Ishikawa, Kenji [1 ]
Takeda, Keigo [1 ]
Kondo, Hiroki [1 ]
Sekine, Makoto [1 ]
Hori, Masaru [1 ]
Ito, Masafumi [2 ]
机构
[1] Nagoya Univ, Dept Elect Engn & Comp Sci, Grad Sch Engn, Chikusa Ku, Nagoya, Aichi 4648603, Japan
[2] Meijo Univ, Dept Elect & Elect Engn, Fac Sci & Technol, Tenpaku Ku, Nagoya, Aichi 4688502, Japan
关键词
WAFER; RADICALS; SILICON; THERMOMETRY; FILMS;
D O I
10.1063/1.4827426
中图分类号
O59 [应用物理学];
学科分类号
摘要
Rapid high-precision temperature monitoring systems for silicon wafers applicable even during plasma processing have been developed using frequency-domain low-coherence interferometry without a reference mirror. It was found to have a precision of 0.04 degrees C, a response time of 1 ms, and a large tolerance to mechanical vibrations and fiber vending when monitoring the temperature of commercial Si wafers. The performance is a substantial improvement over the previous precision of 0.11 degrees C measured in a few seconds using a time-domain method. It is, therefore, a powerful real-time technique to monitor rapidly varying wafer temperatures with high precision. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:3
相关论文
共 50 条
  • [41] Measurement of ocular axial length using full-range spectral-domain low-coherence interferometry
    王毅
    冯亮
    朱礼达
    周红仙
    马振鹤
    ChineseOpticsLetters, 2018, 16 (03) : 61 - 65
  • [42] Measurement of ocular axial length using full-range spectral-domain low-coherence interferometry
    Wang, Yi
    Feng, Liang
    Zhu, Lida
    Zhou, Hongxian
    Ma, Zhenhe
    CHINESE OPTICS LETTERS, 2018, 16 (03)
  • [43] Light source for low-coherence interferometry and imaging
    Sverdlov, MI
    Akchurin, GG
    Alaverdyan, SA
    Andrushkevich, TA
    Zimnyakov, DA
    Kuznetsova, OA
    Mishin, AA
    Mikaelyan, GT
    Sokolov, SN
    Stepuhovich, AV
    Tuchin, VV
    COHERENCE DOMAIN OPTICAL METHODS IN BIOMEDICAL SCIENCE AND CLINICAL APPLICATIONS II, PROCEEDINGS OF, 1998, 3251 : 273 - 277
  • [44] Semiconductor line source for low-coherence interferometry
    Zvyagin, AV
    Garcia-Webb, MG
    Sampson, DD
    APPLIED OPTICS, 2001, 40 (06) : 913 - 915
  • [45] Needle-based refractive index measurement using low-coherence interferometry
    Zysk, Adam M.
    Adie, Steven G.
    Armstrong, Julian J.
    Leigh, Matthew S.
    Paduch, Alexandre
    Sampson, David D.
    Nguyen, Freddy T.
    Boppart, Stephen A.
    OPTICS LETTERS, 2007, 32 (04) : 385 - 387
  • [46] Measurement of Faraday rotation using phase-sensitive low-coherence interferometry
    Al-Qaisi, Muhammad K.
    Wang, Hui
    Akkin, Taner
    APPLIED OPTICS, 2009, 48 (30) : 5829 - 5833
  • [47] Self-mixing low-coherence interferometry
    Rovati, L
    Musatti, G
    Docchio, F
    BIOMEDICAL SYSTEMS AND TECHNOLOGIES II, PROCEEDINGS OF, 1998, 3199 : 268 - 272
  • [48] Simultaneous film thickness measurement and wall temperature assessment by Low-Coherence Interferometry
    Borgetto, Nicolas
    Andre, Frederic
    Galizzi, Cedric
    Escudie, Dany
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2013, 44 : 512 - 519
  • [49] Applications of low-coherence interferometry in fiber optics
    Hlubina, P
    LIGHTMETRY: METROLOGY, SPECTROSCOPY, AND TESTING TECHNIQUES USING LIGHT, 2001, 4517 : 259 - 266
  • [50] Low-coherence optical fibre speckle interferometry
    Balboa, I.
    D Ford, H.
    Tatam, R. P.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2006, 17 (04) : 605 - 616