A preconditioned hybrid reconstruction algorithm for electrical impedance tomography

被引:1
|
作者
Fan, Wenru [1 ]
Wang, Huaxiang [1 ]
机构
[1] Tianjin Univ, Sch Elect Engn & Automat, Tianjin 300072, Peoples R China
来源
SEVENTH INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION AND CONTROL TECHNOLOGY: SENSORS AND INSTRUMENTS, COMPUTER SIMULATION, AND ARTIFICIAL INTELLIGENCE | 2008年 / 7127卷
关键词
Electrical impedance tomography; image reconstruction; Krylov subspace; hybrid algorithm; preconditioning;
D O I
10.1117/12.806460
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Electrical impedance tomography (EIT) aims to estimate the electrical properties at the interior of an object from current-voltage measurements on its boundary. In this paper, preconditioned reconstruction algorithm which improves the property of iterative convergence has been proposed to solve the inverse problem of EIT. Experimental results indicate that the algorithm is much more stable and efficient compared with normal iterative methods. At the same time, the invertible preconditioners and prior information of human thorax have been discussed in this paper.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] An Image Reconstruction Algorithm for Electrical Impedance Tomography Using Measurement Estimation of Virtual Electrodes
    Yang, Lu
    Wu, Hongtao
    Liu, Kai
    Chen, Bai
    Yang, Yunjie
    Zhu, Chengjun
    Yao, Jiafeng
    IEEE SENSORS JOURNAL, 2022, 22 (13) : 13012 - 13022
  • [22] 43 Reconstruction algorithm of inductive magnetic resonance electrical impedance tomography
    Liu, G. Q.
    Meng, M.
    Jiang, J. Y.
    Wang, H.
    Wang, X. L.
    Jiang, L. T.
    13TH INTERNATIONAL CONFERENCE ON ELECTRICAL BIOIMPEDANCE AND THE 8TH CONFERENCE ON ELECTRICAL IMPEDANCE TOMOGRAPHY 2007, 2007, 17 : 520 - +
  • [23] Reconstruction algorithm of electrical impedance tomography for particle concentration distribution in suspension
    Min Chan Kim
    Kyung Youn Kim
    Sin Kim
    Kyung Jin Lee
    Korean Journal of Chemical Engineering, 2004, 21 : 352 - 357
  • [24] Reconstruction algorithm of electrical impedance tomography for particle concentration distribution in suspension
    Kim, MC
    Kim, KY
    Kim, S
    Lee, KJ
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2004, 21 (02) : 352 - 357
  • [25] An image reconstruction algorithm for three-dimensional electrical impedance tomography
    Le Hyaric, A
    Pidcock, MK
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2001, 48 (02) : 230 - 235
  • [26] A Proportional Genetic Algorithm for Image Reconstruction of Static Electrical Impedance Tomography
    Zhang, Yijia
    Chen, Huaijin
    Yang, Lu
    Liu, Kai
    Li, Fang
    Bai, Chen
    Wu, Hongtao
    Yao, Jiafeng
    IEEE SENSORS JOURNAL, 2020, 20 (24) : 15026 - 15033
  • [27] Block-sparse Reconstruction for Electrical Impedance Tomography
    Wang Qi
    Zhang Pengcheng
    Wang Jianming
    Li Xiuyan
    Lian Zhijie
    Chen Qingliang
    Chen Tongyun
    Chen Xiaojing
    He Jing
    Duan Xiaojie
    Wang Huaxiang
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2018, 40 (03) : 676 - 682
  • [28] New regularized image reconstruction for electrical impedance tomography
    Hou, WD
    Mo, YL
    IMAGE MATCHING AND ANALYSIS, 2001, 4552 : 286 - 291
  • [29] Directional Algebraic Reconstruction Technique for Electrical Impedance Tomography
    Kim, Ji Hoon
    Choi, Bong Yeol
    Ijaz, Umer Zeeshan
    Kim, Bong Seok
    Kim, Sin
    Kim, Kyung Youn
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2009, 54 (04) : 1439 - 1447
  • [30] An image reconstruction algorithm for electrical impedance tomography using Symkaczmarz based on structured sparse representation
    Wang, Qi
    He, Jing
    Wang, Jianming
    Li, Xiuyan
    Duan, Xiaojie
    Zhang, Pengcheng
    Chen, Xiaojing
    Sun, Yukuan
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2019, 41 (10) : 2803 - 2815