On the generalized Weyl problem for flat metrics in the hyperbolic 3-space

被引:2
作者
Galvez, Jose A. [1 ]
Martinez, Antonio [1 ]
Teruel, Jose L. [1 ]
机构
[1] Univ Granada, Dept Geometria & Topol, E-18071 Granada, Spain
关键词
Weyl's problem; Complete flat surfaces; Isolated singularities; Hyperbolic; 3-space; ISOLATED SINGULARITIES; CAUCHY-PROBLEM; SURFACES; CURVATURE; FRONTS; SPACE;
D O I
10.1016/j.jmaa.2013.08.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper deals with the study of complete embedded flat surfaces in H-3 with a finite number of isolated singularities. We give a detailed information about its topology, conformal type and metric properties. We show how to solve the generalized Weyl's problem of realizing isometrically any complete flat metric with Euclidean singularities in H-3 which gives the existence of complete embedded flat surfaces with a finite arbitrary number of isolated singularities. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:144 / 150
页数:7
相关论文
共 20 条
[1]   The Cauchy problem for improper affine spheres and the Hessian one equation [J].
Aledo, Juan A. ;
Chaves, Rosa M. B. ;
Galvez, Jose A. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (09) :4183-4208
[2]   The affine Cauchy problem [J].
Aledo, Juan A. ;
Martinez, Antonio ;
Milan, Francisco .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (01) :70-83
[3]  
ALEXANDROV AD, 2006, SELECTED WORKS 2
[4]   Complete flat surfaces with two isolated singularities in hyperbolic 3-space [J].
Corro, Armando V. ;
Martinez, Antonio ;
Milan, Francisco .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 366 (02) :582-592
[6]   Embedded isolated singularities of flat surfaces in hyperbolic 3-space [J].
Gálvez, JA ;
Mira, P .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 24 (02) :239-260
[7]   Flat surfaces in the hyperbolic 3-space [J].
Gálvez, JA ;
Martínez, A ;
Milán, F .
MATHEMATISCHE ANNALEN, 2000, 316 (03) :419-435
[8]  
Heijenoort J.V., 1952, COMMUNICATION PURE A, V5, P223
[10]  
Huber A., 1960, COMMENT MATH HELV, V34, P99