Comparing the performance of a reversible jump Markov chain Monte Carlo algorithm for DNA sequences alignment

被引:1
|
作者
Alvarez, Luis J.
Garcia, Nancy L.
Rodrigues, Eliane R.
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Area Invest Cient, Mexico City 04510, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Unidad Cuernavaca, Cuernavaca 62210, Morelos, Mexico
[3] Univ Estadual Campinas, IMECC, Dept Estatist, BR-13081970 Campinas, SP, Brazil
关键词
Bayesian inference; sequences alignment; reversible jump Markov chain Monte Carlo method; hidden Markov model; Potts model;
D O I
10.1080/10629360500109226
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Assume that K independent copies are made from a common prototype DNA sequence whose length is a random variable. In this paper, the problem of aligning those copies and therefore the problem of estimating the prototype sequence that produced the copies is addressed. A hidden Markov chain is used to model the copying procedure, and a reversible jump Markov chain Monte Carlo algorithm is used to sample the parameters of the model from their posterior distribution. Using the sample obtained, the Bayesian model and the prototype sequence may be selected using the maximum a posteriori estimate. A prior distribution for the prototype DNA sequence that incorporates a correlation among neighbouring bases is also considered. In addition, an analysis of the performance of the algorithm is presented when different scenarios are taken into account.
引用
收藏
页码:567 / 584
页数:18
相关论文
共 50 条
  • [1] Reversible Jump Markov Chain Monte Carlo for Deconvolution
    Dongwoo Kang
    Davide Verotta
    Journal of Pharmacokinetics and Pharmacodynamics, 2007, 34 : 263 - 287
  • [2] Reversible jump Markov chain Monte Carlo for deconvolution
    Kang, Dongwoo
    Verotta, Davide
    JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2007, 34 (03) : 263 - 287
  • [3] A reversible jump Markov chain Monte Carlo algorithm for analysis of functional neuroimages
    Lukic, AS
    Wernick, MN
    Galatsanos, NP
    Yang, YY
    Strother, SC
    2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, 2002, : 133 - 136
  • [4] REVERSIBLE JUMP MARKOV CHAIN MONTE CARLO FOR PULSE FITTING
    Goodyer, Fred
    Ahmad, Bashar, I
    Godsill, Simon
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2024), 2024, : 9556 - 9560
  • [5] A reversible jump Markov chain Monte Carlo algorithm for bacterial promoter motifs discovery
    Nicolas, Pierre
    Tocquet, Anne-Sophie
    Miele, Vincent
    Muri, Florence
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2006, 13 (03) : 651 - 667
  • [6] An extension of reversible jump Markov Chain Monte Carlo in Hidden Markov Models
    Zhou, Feifei
    Chen, Jinwen
    Proceedings of the Fifth International Conference on Information and Management Sciences, 2006, 5 : 559 - 563
  • [7] Stochastic inversion of fracture networks using the reversible jump Markov chain Monte Carlo algorithm
    Feng, Runhai
    Nasser, Saleh
    ENERGY, 2024, 301
  • [8] Simulated annealing using a Reversible Jump Markov Chain Monte Carlo algorithm for fuzzy clustering
    Bandyopadhyay, S
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2005, 17 (04) : 479 - 490
  • [9] Model choice using reversible jump Markov chain Monte Carlo
    Hastie, David I.
    Green, Peter J.
    STATISTICA NEERLANDICA, 2012, 66 (03) : 309 - 338
  • [10] Reversible jump Markov chain Monte Carlo method for deconvolution.
    Kang, D
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2003, 73 (02) : P57 - P57