On volume product inequalities for convex sets

被引:42
作者
Campi, S
Gronchi, P
机构
[1] Univ Modena, Dipartimento Matemat Pura & Applicata G Vitali, I-41100 Modena, Italy
[2] CNR, Ist Applicaz Calcolo, Sez Firenze, I-50019 Sesto Fiorentino, FI, Italy
关键词
D O I
10.1090/S0002-9939-06-08241-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The volume of the polar body of a symmetric convex set K of R-d is investigated. It is shown that its reciprocal is a convex function of the time t along movements, in which every point of K moves with constant speed parallel to a fixed direction. This result is applied to find reverse forms of the L-p-Blaschke-Santalo inequality for two-dimensional convex sets.
引用
收藏
页码:2393 / 2402
页数:10
相关论文
共 24 条
[1]  
Aleksandrov A. D., 1967, SOV MATH DOKL, V172, p[755, 149]
[2]  
ALEKSANDROV AD, 1966, SIV MATH Z, V8, P394
[3]   NEW VOLUME RATIO PROPERTIES FOR CONVEX SYMMETRICAL BODIES IN RN [J].
BOURGAIN, J ;
MILMAN, VD .
INVENTIONES MATHEMATICAE, 1987, 88 (02) :319-340
[4]  
Burago Y. D., 1988, Geometric Inequalities
[5]   On the reverse Lp-Busemann-Petty centroid inequality [J].
Campi, S ;
Gronchi, P .
MATHEMATIKA, 2002, 49 (97-98) :1-11
[6]   The Lp-Busemann-Petty centroid inequality [J].
Campi, S ;
Gronchi, P .
ADVANCES IN MATHEMATICS, 2002, 167 (01) :128-141
[7]  
Campi S., 1999, REND I MAT U TRIESTE, V31, P79
[8]   The Brunn-Minkowski inequality [J].
Gardner, RJ .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 39 (03) :355-405
[9]  
Gardner RJ., 1995, GEOMETRIC TOMOGRAPHY
[10]   ZONOIDS WITH MINIMAL VOLUME-PRODUCT - A NEW PROOF [J].
GORDON, Y ;
MEYER, M ;
REISNER, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 104 (01) :273-276