Global mean sea-level rise in a world agreed upon in Paris

被引:20
作者
Bittermann, Klaus [1 ,2 ]
Rahmstorf, Stefan [2 ]
Kopp, Robert E. [3 ,4 ]
Kemp, Andrew C. [1 ]
机构
[1] Tufts Univ, Dept Earth & Ocean Sci, Medford, MA 02155 USA
[2] Potsdam Inst Climate Impact Res, Earth Syst Anal, D-14473 Potsdam, Germany
[3] Rutgers State Univ, Dept Earth & Planetary Sci, Piscataway, NJ 08854 USA
[4] Rutgers State Univ, Inst Earth Ocean & Atmospher Sci, New Brunswick, NJ 08901 USA
基金
美国国家科学基金会;
关键词
global mean sea level; Paris accord; semi-empirical sea-level model; global mean sea-level projections; CLIMATE-CHANGE; VARIABILITY; SCENARIOS; POLICY; PREINDUSTRIAL; ACCELERATION; TEMPERATURE; ANTARCTICA; GLACIERS; THWAITES;
D O I
10.1088/1748-9326/aa9def
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Although the 2015 Paris Agreement seeks to hold global average temperature to 'well below 2 degrees C above pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5 degrees C above pre-industrial levels', projections of global mean sea-level (GMSL) rise commonly focus on scenarios in which there is a high probability that warming exceeds 1.5 degrees C. Using a semi-empirical model, we project GMSL changes between now and 2150 CE under a suite of temperature scenarios that satisfy the Paris Agreement temperature targets. The projected magnitude and rate of GMSL rise varies among these low emissions scenarios. Stabilizing temperature at 1.5 degrees C instead of 2 degrees C above preindustrial reduces GMSL in 2150 CE by 17 cm(90% credible interval: 14-21 cm) and reduces peak rates of rise by 1.9 mm yr(-1) (90% credible interval: 1.4-2.6 mm yr(-1)). Delaying the year of peak temperature has little long-term influence on GMSL, but does reduce the maximum rate of rise. Stabilizing at 2 degrees C in 2080 CE rather than 2030 CE reduces the peak rate by 2.7 mm yr(-1) (90% credible interval: 2.0-4.0 mm yr(-1)).
引用
收藏
页数:9
相关论文
共 63 条
[1]   Satellite Altimetry-Based Sea Level at Global and Regional Scales [J].
Ablain, M. ;
Legeais, J. F. ;
Prandi, P. ;
Marcos, M. ;
Fenoglio-Marc, L. ;
Dieng, H. B. ;
Benveniste, J. ;
Cazenave, A. .
SURVEYS IN GEOPHYSICS, 2017, 38 (01) :7-31
[2]  
[Anonymous], 2015, AD PAR AGR 21 C PART
[3]   Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice [J].
Bassis, J. N. ;
Walker, C. C. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 468 (2140) :913-931
[4]   Predictability of twentieth century sea-level rise from past data [J].
Bittermann, Klaus ;
Rahmstorf, Stefan ;
Perrette, Mahe ;
Vermeer, Martin .
ENVIRONMENTAL RESEARCH LETTERS, 2013, 8 (01)
[5]  
Cazenave A, 2014, NAT CLIM CHANGE, V4, P358, DOI [10.1038/nclimate2159, 10.1038/NCLIMATE2159]
[6]  
Chen XY, 2017, NAT CLIM CHANGE, V7, P492, DOI [10.1038/nclimate3325, 10.1038/NCLIMATE3325]
[7]  
Church JA, 2014, CLIMATE CHANGE 2013: THE PHYSICAL SCIENCE BASIS, P1137
[8]   Sea-Level Rise from the Late 19th to the Early 21st Century [J].
Church, John A. ;
White, Neil J. .
SURVEYS IN GEOPHYSICS, 2011, 32 (4-5) :585-602
[9]   Consequences of twenty-first-century policy for multi-millennial climate and sea-level change [J].
Clark, Peter U. ;
Shakun, Jeremy D. ;
Marcott, Shaun A. ;
Mix, Alan C. ;
Eby, Michael ;
Kulp, Scott ;
Levermann, Anders ;
Milne, Glenn A. ;
Pfister, Patrik L. ;
Santer, Benjamin D. ;
Schrag, Daniel P. ;
Solomon, Susan ;
Stocker, Thomas F. ;
Strauss, Benjamin H. ;
Weaver, Andrew J. ;
Winkelmann, Ricarda ;
Archer, David ;
Bard, Edouard ;
Goldner, Aaron ;
Lambeck, Kurt ;
Pierrehumbert, Raymond T. ;
Plattner, Gian-Kasper .
NATURE CLIMATE CHANGE, 2016, 6 (04) :360-369
[10]   Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends [J].
Cowtan, Kevin ;
Way, Robert G. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2014, 140 (683) :1935-1944