Parameter identification problems in the modelling of cell motility

被引:11
作者
Croft, Wayne [1 ]
Elliott, Charles M. [2 ]
Ladds, Graham [3 ]
Stinner, Bjoern [2 ]
Venkataraman, Chandrasekhar [4 ]
Weston, Cathryn [3 ]
机构
[1] Univ Nottingham, Sch Life Sci, Queens Med Ctr, Nottingham NG7 2UH, England
[2] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
[3] Univ Warwick, Warwick Med Sch, Div Biomed Cell Biol, Coventry CV4 7AL, W Midlands, England
[4] Univ Sussex, Sch Math & Phys Sci, Dept Math, Brighton BN1 9RF, E Sussex, England
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
Parameter identification; Cell motility; Geometric evolution law; Reaction-diffusion system; Fission yeast;
D O I
10.1007/s00285-014-0823-6
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a novel parameter identification algorithm for the estimation of parameters in models of cell motility using imaging data of migrating cells. Two alternative formulations of the objective functional that measures the difference between the computed and observed data are proposed and the parameter identification problem is formulated as a minimisation problem of nonlinear least squares type. A Levenberg-Marquardt based optimisation method is applied to the solution of the minimisation problem and the details of the implementation are discussed. A number of numerical experiments are presented which illustrate the robustness of the algorithm to parameter identification in the presence of large deformations and noisy data and parameter identification in three dimensional models of cell motility. An application to experimental data is also presented in which we seek to identify parameters in a model for the monopolar growth of fission yeast cells using experimental imaging data. Our numerical tests allow us to compare the method with the two different formulations of the objective functional and we conclude that the results with both objective functionals seem to agree.
引用
收藏
页码:399 / 436
页数:38
相关论文
共 64 条
[1]  
Ackleh A.S., Reich S., Parameter estimation in nonlinear evolution equations, Numer Funct Anal Optim, 19, 9-10, pp. 933-947, (1998)
[2]  
Ackleh A.S., Ferdinand R.R., Reich S., Numerical studies of parameter estimation techniques for nonlinear evolution equations, Kybernetika, 34, 6, pp. 693-712, (1998)
[3]  
Barrett J., Garcke H., Nurnberg R., A parametric finite element method for fourth order geometric evolution equations, J Comput Phys, 222, 1, pp. 441-467, (2007)
[4]  
Barrett J., Garcke H., Nurnberg R., Parametric approximation of Willmore flow and related geometric evolution equations, SIAM J Sci Comput, 31, (2008)
[5]  
Bendezu F.O., Martin S.G., Cdc42 explores the cell periphery for mate selection in fission yeast, Curr Biol, 23, 1, pp. 42-47, (2013)
[6]  
Bond M., Croft W., Tyson R., Bretschneider T., Davey J., Ladds G., Quantitative analysis of human ras localization and function in the fission yeast Schizosaccharomyces pombe, Yeast, 30, 4, pp. 145-156, (2013)
[7]  
Bosgraaf L., van Haastert P., Bretschneider T., Analysis of cell movement by simultaneous quantification of local membrane displacement and fluorescent intensities using quimp2, Cell Motil Cytoskelet, 66, 3, pp. 156-165, (2009)
[8]  
Bray D., Cell movements: from molecules to motility, (2001)
[9]  
Burger M., Levenberg–Marquardt level set methods for inverse obstacle problems, Inverse Probl, 20, 1, (2004)
[10]  
Chan T.F., Vese L.A., Active contours without edges, IEEE Trans Image Process, 10, 2, pp. 266-277, (2001)