Concentrating solar thermal power and thermochemical fuels

被引:565
作者
Romero, Manuel [1 ]
Steinfeld, Aldo [2 ,3 ]
机构
[1] IMDEA Energy Inst, Mostoles 28935, Spain
[2] ETH, Dept Mech & Proc Engn, CH-8092 Zurich, Switzerland
[3] Paul Scherrer Inst, Solar Technol Lab, CH-5232 Villigen, Switzerland
关键词
FEO/FE3O4 REDOX REACTIONS; CENTRAL RECEIVER SYSTEMS; WATER-SPLITTING CYCLE; HYDROGEN-PRODUCTION; STEAM-GASIFICATION; SYNGAS PRODUCTION; THERMODYNAMIC ANALYSIS; CHEMICAL REACTOR; CARBON-DIOXIDE; H-2; PRODUCTION;
D O I
10.1039/c2ee21275g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Concentrated solar energy provides a virtually unlimited source of clean, non-polluting, high-temperature heat. This article reviews the underlying principles of concentrating solar radiation and describes the latest technological advances and future prospects of solar thermal power and thermochemical fuel production.
引用
收藏
页码:9234 / 9245
页数:12
相关论文
共 50 条
[31]   Technologies and trends in solar power and fuels [J].
Roeb, Martin ;
Neises, Martina ;
Monnerie, Nathalie ;
Sattler, Christian ;
Pitz-Paal, Robert .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (07) :2503-2511
[32]   Using Concentrating Solar Power to Create a Geological Thermal Energy Reservoir for Seasonal Storage and Flexible Power Plant Operation [J].
Sharan, Prashant ;
Kitz, Kevin ;
Wendt, Daniel ;
McTigue, Joshua ;
Zhu, Guangdong .
JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2021, 143 (01)
[33]   Novel design measures for optimizing the yearlong performance of a concentrating solar thermal power plant using thermal storage and a dry-cooled supercritical CO2 power block [J].
Ehsan, M. Monjurul ;
Guan, Zhiqiang ;
Gurgenci, Hal ;
Klimenko, Alexander .
ENERGY CONVERSION AND MANAGEMENT, 2020, 216
[34]   CO2 and H2O conversion to solar fuels via two-step solar thermochemical looping using iron oxide redox pair [J].
Abanades, Stephane ;
Villafan-Vidales, Heidi Isabel .
CHEMICAL ENGINEERING JOURNAL, 2011, 175 :368-375
[35]   Investigation of thermal and carbothermal reduction of volatile oxides (ZnO, SnO2, GeO2, and MgO) via solar-driven vacuum thermogravimetry for thermochemical production of solar fuels [J].
Leveque, Gael ;
Abanades, Stephane .
THERMOCHIMICA ACTA, 2015, 605 :86-94
[36]   Thermodynamic development and design of a concentrating solar thermochemical water-splitting process for co-production of hydrogen and electricity [J].
Budama, Vishnu Kumar ;
Johnson, Nathan G. ;
McDaniel, Anthony ;
Ermanoski, Ivan ;
Stechel, Ellen B. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (37) :17574-17587
[37]   Thermochemical conversion of plastic waste to fuels: a review [J].
Nanda, Sonil ;
Berruti, Franco .
ENVIRONMENTAL CHEMISTRY LETTERS, 2021, 19 (01) :123-148
[38]   Thermodynamic performances of a power-to-X system based on solar concentrating photovoltaic/thermal hydrogen production [J].
Yao, Zibo ;
Wang, Jiangjiang ;
Zhao, Ning ;
Jiang, Haowen .
ENERGY CONVERSION AND MANAGEMENT, 2024, 319
[39]   Solar fuels production via two-step thermochemical cycle based on Fe3O4/Fe with methane reduction [J].
Wang, Lei ;
Ma, Tianzeng ;
Chang, Zheshao ;
Li, Hao ;
Fu, Mingkai ;
Li, Xin .
SOLAR ENERGY, 2019, 177 :772-781
[40]   Co-Precipitation Synthesized Ag-Doped Ceria Redox Material (ACRM) for the Thermochemical Conversion of CO2 into Solar Fuels [J].
Takalkar, Gorakshnath ;
Akhter, Sayma ;
Bhosale, Rahul R. .
APPLIED SCIENCES-BASEL, 2024, 14 (18)