Combinatorics of Riordan arrays with identical A and Z sequences

被引:46
作者
Cheon, Gi-Sang [1 ]
Kim, Hana [1 ]
Shapiro, Louis W. [2 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
[2] Howard Univ, Dept Math, Washington, DC 20059 USA
基金
新加坡国家研究基金会;
关键词
Riordan array; Lukasiewicz path; Dyck path; Consistent Riordan array; TREES;
D O I
10.1016/j.disc.2012.03.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In theory, Riordan arrays can have any A-sequence and any Z-sequence. For examples of combinatorial interest they tend to be related. Here we look at the case that they are identical or nearly so. We provide a combinatorial interpretation in terms of weighted Lukasiewicz paths and then look at several large classes of examples. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2040 / 2049
页数:10
相关论文
共 15 条
[1]  
[Anonymous], 1997, ENUMERATIVE COMBINAT
[2]  
[Anonymous], 1994, FDN COMPUTER SCI
[3]   Ordered trees with prescribed root degrees, node degrees, and branch lengths [J].
Deutsch, E .
DISCRETE MATHEMATICS, 2004, 282 (1-3) :89-94
[4]   A survey of the Fine numbers [J].
Deutsch, E ;
Shapiro, L .
DISCRETE MATHEMATICS, 2001, 241 (1-3) :241-265
[5]   A FACTORIZATION FOR FORMAL LAURENT SERIES AND LATTICE PATH ENUMERATION [J].
GESSEL, IM .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1980, 28 (03) :321-337
[6]   Sequence characterization of Riordan arrays [J].
He, Tian-Xiao ;
Sprugnoli, Renzo .
DISCRETE MATHEMATICS, 2009, 309 (12) :3962-3974
[7]   On some alternative characterizations of Riordan arrays [J].
Merlini, D ;
Rogers, DG ;
Sprugnoli, R ;
Verri, MC .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1997, 49 (02) :301-320
[8]   Generating trees and proper riordan arrays [J].
Merlini, D ;
Verri, MC .
DISCRETE MATHEMATICS, 2000, 218 (1-3) :167-183
[9]   The relevant prefixes of coloured Motzkin walks: An average case analysis [J].
Merlini, D. ;
Sprugnoli, R. .
THEORETICAL COMPUTER SCIENCE, 2010, 411 (01) :148-163
[10]   A bijective approach to the area of generalized Motzkin paths [J].
Pergola, E ;
Pinzani, R ;
Rinaldi, S ;
Sulanke, RA .
ADVANCES IN APPLIED MATHEMATICS, 2002, 28 (3-4) :580-591