A note on a nonlocal nonlinear reaction-diffusion model

被引:4
作者
Walker, Christoph [1 ]
机构
[1] Leibniz Univ Hannover, Inst Angew Math, D-30167 Hannover, Germany
关键词
Bifurcation; Steady states; Cross-diffusion; Age structure; Maximal regularity; PREY-PREDATOR SYSTEM; POSITIVE SOLUTIONS; GLOBAL BIFURCATION; CROSS-DIFFUSION; EQUATIONS;
D O I
10.1016/j.aml.2012.02.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give an application of the Crandall-Rabinowitz theorem on local bifurcation to a system of nonlinear parabolic equations with nonlocal reaction and cross-diffusion terms as well as nonlocal initial conditions. The system arises as steady-state equations of two interacting age-structured populations. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1772 / 1777
页数:6
相关论文
共 18 条
[11]   Superlinear indefinite systems:: Beyond Lotka-Volterra models [J].
López-Gómez, J ;
Molina-Meyer, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 221 (02) :343-411
[12]   On global bifurcation for quasilinear elliptic systems on bounded domains [J].
Shi, Junping ;
Wang, Xuefeng .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (07) :2788-2812
[13]   SPATIAL SEGREGATION OF INTERACTING SPECIES [J].
SHIGESADA, N ;
KAWASAKI, K ;
TERAMOTO, E .
JOURNAL OF THEORETICAL BIOLOGY, 1979, 79 (01) :83-99
[14]  
Walker Ch., NODEA NONLI IN PRESS
[15]   On positive solutions of some system of reaction-diffusion equations with nonlocal initial conditions [J].
Walker, Christoph .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 660 :149-179
[16]   On nonlocal parabolic steady-state equations of cooperative or competing systems [J].
Walker, Christoph .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (06) :3552-3571
[17]   POSITIVE EQUILIBRIUM SOLUTIONS FOR AGE- AND SPATIALLY-STRUCTURED POPULATION MODELS [J].
Walker, Christoph .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (04) :1366-1387
[18]  
Webb GF, 2008, LECT NOTES MATH, V1936