A note on a nonlocal nonlinear reaction-diffusion model

被引:4
作者
Walker, Christoph [1 ]
机构
[1] Leibniz Univ Hannover, Inst Angew Math, D-30167 Hannover, Germany
关键词
Bifurcation; Steady states; Cross-diffusion; Age structure; Maximal regularity; PREY-PREDATOR SYSTEM; POSITIVE SOLUTIONS; GLOBAL BIFURCATION; CROSS-DIFFUSION; EQUATIONS;
D O I
10.1016/j.aml.2012.02.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give an application of the Crandall-Rabinowitz theorem on local bifurcation to a system of nonlinear parabolic equations with nonlocal reaction and cross-diffusion terms as well as nonlocal initial conditions. The system arises as steady-state equations of two interacting age-structured populations. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1772 / 1777
页数:6
相关论文
共 18 条
[1]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[2]  
[Anonymous], 1992, PITMAN RES NOTES MAT
[3]  
[Anonymous], 1995, ABSTRACT LINEAR THEO
[4]   GLOBAL BIFURCATION OF POSITIVE SOLUTIONS IN SOME SYSTEMS OF ELLIPTIC-EQUATIONS [J].
BLAT, J ;
BROWN, KJ .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1986, 17 (06) :1339-1353
[5]  
Crandall M.G., 1971, J. Funct. Anal., V8, P321, DOI DOI 10.1016/0022-1236(71)90015-2
[7]   On the symbiotic Lotka-Volterra model with diffusion and transport effects [J].
Delgado, M ;
López-Gómez, J ;
Suárez, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 160 (01) :175-262
[8]   Nonlinear age-dependent diffusive equations:: A bifurcation approach [J].
Delgado, Manuel ;
Molina-Becerra, Monica ;
Suarez, Antonio .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (09) :2133-2155
[9]   Stability of steady-state solutions to a prey-predator system with cross-diffusion [J].
Kuto, K .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 197 (02) :293-314
[10]   Multiple coexistence states for a prey-predator system with cross-diffusion [J].
Kuto, K ;
Yamada, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 197 (02) :315-348