Microstructures and mechanical properties of TiZrHfNbTaWx refractory high entropy alloys

被引:47
作者
Huang, Wenjun [1 ]
Wang, Xuejiao [1 ]
Qiao, Junwei [1 ]
Wu, Yucheng [2 ,3 ]
机构
[1] Taiyuan Univ Technol, Coll Mat Sci & Engn, Lab High Entropy Alloys, Taiyuan 030024, Peoples R China
[2] Taiyuan Univ Technol, Minist Educ, Key Lab Interface Sci & Engn New Mat, Taiyuan 030024, Peoples R China
[3] Hefei Univ Technol, Natl Local Joint Engneering Res Ctr Nonferrous Me, Hefei 230009, Peoples R China
基金
中国国家自然科学基金;
关键词
Refractory high entropy alloy (RHEA); Mechanical properties; Solid solution strengthening; Tungsten; SOLID-SOLUTION PHASE; AL ADDITION; STRUCTURAL EVOLUTION; TENSILE PROPERTIES; STABILITY; INSTABILITY; PREDICTION; ALUMINUM;
D O I
10.1016/j.jallcom.2022.165187
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Refractory high-entropy alloys (RHEAs), which exhibit excellent mechanical properties at room temperature and high temperature, have received widespread attention. The TiZrHfNbTa alloy is one of the few refractory high-entropy alloys with tensile ductility. Alloying means is a common method to optimize the special properties of alloys. Here, a series of TiZrHfNbTaWx (x = 0-1) RHEAs were synthesized by arc melting technique. It showed that the fracture plasticity of the RHEAs changed from >50% of the TiZrHfNbTa to 20.7% of the TiZrHfNbTaW, and the yield strength increased from 1064 MPa of the TiZrHfNbTa to 1726 MPa of the TiZrHfNbTaW. In addition, The TiZrHfNbTaWx RHEAs predominantly consisted of a single random solid solution phase with body-centered cubic (BCC) crystal structure. The present result indicated that W addition could effectively enhance the strength of the TiZrHfNbTa alloy, while maintaining high plasticity. Finally, a simple solid solution strengthening theoretical model was proposed to explain the high yield strength, and the experimental values were in good agreement with the theoretical values. (c) 2022 Published by Elsevier B.V.
引用
收藏
页数:11
相关论文
共 71 条
[1]   Spinodal-modulated solid solution delivers a strong and ductile refractory high-entropy alloy [J].
An, Zibing ;
Mao, Shengcheng ;
Yang, Tao ;
Liu, Chain Tsuan ;
Zhang, Bin ;
Ma, Evan ;
Zhou, Hao ;
Zhang, Ze ;
Wang, Lihua ;
Han, Xiaodong .
MATERIALS HORIZONS, 2021, 8 (03) :948-955
[2]  
Callister W. D., 2007, MAT SCI ENG INTRO, V7
[3]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[4]   Refractory alloying additions on the thermal stability and mechanical properties of high-entropy alloys [J].
Cao, B. X. ;
Yang, T. ;
Fan, L. ;
Luan, J. H. ;
Jiao, Z. B. ;
Liu, C. T. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 797
[5]   Phase prediction in high entropy alloys - A kinetic approach [J].
Chattopadhyay, C. ;
Prasad, Anil ;
Murty, B. S. .
ACTA MATERIALIA, 2018, 153 :214-225
[6]   Solid-solution strengthening in refractory high entropy alloys [J].
Coury, Francisco Gil ;
Kaufman, Michael ;
Clarke, Amy J. .
ACTA MATERIALIA, 2019, 175 :66-81
[7]   Microstructure of a near-equimolar refractory high-entropy alloy [J].
Couzinie, J. P. ;
Dirras, G. ;
Perriere, L. ;
Chauveau, T. ;
Leroy, E. ;
Champion, Y. ;
Guillot, I. .
MATERIALS LETTERS, 2014, 126 :285-287
[8]   ATOMIC SIZE EFFECT ON THE FORMABILITY OF METALLIC GLASSES [J].
EGAMI, T ;
WASEDA, Y .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1984, 64 (1-2) :113-134
[9]   Outstanding radiation resistance of tungsten-based high-entropy alloys [J].
El-Atwani, O. ;
Li, N. ;
Li, M. ;
Devaraj, A. ;
Baldwin, J. K. S. ;
Schneider, M. M. ;
Sobieraj, D. ;
Wrobel, J. S. ;
Nguyen-Manh, D. ;
Maloy, S. A. ;
Martinez, E. .
SCIENCE ADVANCES, 2019, 5 (03)
[10]   Superior High-Temperature Strength in a Supersaturated Refractory High-Entropy Alloy [J].
Feng, Rui ;
Feng, Bojun ;
Gao, Michael C. ;
Zhang, Chuan ;
Neuefeind, Joerg C. ;
Poplawsky, Jonathan D. ;
Ren, Yang ;
An, Ke ;
Widom, Michael ;
Liaw, Peter K. .
ADVANCED MATERIALS, 2021, 33 (48)