Conditional L(p)-quantiles and their application to the testing of symmetry in non-parametric regression

被引:33
作者
Chen, ZH [1 ]
机构
[1] NATL UNIV SINGAPORE, DEPT MATH, SINGAPORE 117548, SINGAPORE
关键词
regression quantile; conditional L(p)-quantile; non-parametric regression; testing of symmetry; asymptotic normality;
D O I
10.1016/0167-7152(95)00163-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The idea of using regression quantiles to test symmetry in a linear regression model is generalized to the non-parametric regression setting. The properties of the L(p)-quantiles, defined through an asymmetric L(p)-loss function, are derived. The asymptotic normality of the kernel estimates of the conditional L(p)-quantiles in the non-parametric regression setting is obtained and their application to the testing of symmetry is discussed.
引用
收藏
页码:107 / 115
页数:9
相关论文
共 11 条
[1]   NONPARAMETRIC REGRESSION M-QUANTILES [J].
ANTOCH, J ;
JANSSEN, P .
STATISTICS & PROBABILITY LETTERS, 1989, 8 (04) :355-362
[2]   CONVERGENCE OF SAMPLE PATHS OF NORMALIZED SUMS OF INDUCED ORDER STATISTICS [J].
BHATTACH.PK .
ANNALS OF STATISTICS, 1974, 2 (05) :1034-1039
[3]   KERNEL AND NEAREST-NEIGHBOR ESTIMATION OF A CONDITIONAL QUANTILE [J].
BHATTACHARYA, PK ;
GANGOPADHYAY, AK .
ANNALS OF STATISTICS, 1990, 18 (03) :1400-1415
[4]   NONPARAMETRIC ESTIMATES OF REGRESSION QUANTILES AND THEIR LOCAL BAHADUR REPRESENTATION [J].
CHAUDHURI, P .
ANNALS OF STATISTICS, 1991, 19 (02) :760-777
[5]  
CHEN Z, 1993, 597 NAT U SING LEE K
[6]  
Chung KL., 1974, COURSE PROBABILITY T
[7]  
HARDLE W, 1984, J ROY STAT SOC B MET, V46, P42
[8]  
KOENKER R, 1994, BIOMETRIKA, V81, P673
[9]   REGRESSION QUANTILES [J].
KOENKER, R ;
BASSETT, G .
ECONOMETRICA, 1978, 46 (01) :33-50
[10]   ROBUST-TESTS FOR HETEROSCEDASTICITY BASED ON REGRESSION QUANTILES [J].
KOENKER, R ;
BASSETT, G .
ECONOMETRICA, 1982, 50 (01) :43-61