Mind the Scales: Harnessing Spatial Big Data for Infectious Disease Surveillance and Inference

被引:40
作者
Lee, Elizabeth C. [1 ]
Asher, Jason M. [3 ]
Goldlust, Sandra [1 ]
Kraemer, John D. [2 ]
Lawson, Andrew B. [4 ]
Bansal, Shweta [1 ,5 ]
机构
[1] Georgetown Univ, Dept Biol, 408 Reiss Sci Bldg, Washington, DC 20057 USA
[2] Georgetown Univ, Dept Hlth Syst Adm, Washington, DC USA
[3] Leidos, Washington, DC USA
[4] Med Univ South Carolina, Dept Publ Hlth Sci, Charleston, SC USA
[5] NIH, Fogarty Int Ctr, Bldg 10, Bethesda, MD 20892 USA
基金
美国国家卫生研究院;
关键词
spatial big data; spatial epidemiology; disease mapping; infectious diseases; digital epidemiology; statistical bias;
D O I
10.1093/infdis/jiw344
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Spatial big data have the velocity, volume, and variety of big data sources and contain additional geographic information. Digital data sources, such as medical claims, mobile phone call data records, and geographically tagged tweets, have entered infectious diseases epidemiology as novel sources of data to complement traditional infectious disease surveillance. In this work, we provide examples of how spatial big data have been used thus far in epidemiological analyses and describe opportunities for these sources to improve disease-mitigation strategies and public health coordination. In addition, we consider the technical, practical, and ethical challenges with the use of spatial big data in infectious disease surveillance and inference. Finally, we discuss the implications of the rising use of spatial big data in epidemiology to health risk communication, and public health policy recommendations and coordination across scales.
引用
收藏
页码:S409 / S413
页数:5
相关论文
共 31 条
  • [11] Spatial Transmission of 2009 Pandemic Influenza in the US
    Gog, Julia R.
    Ballesteros, Sebastien
    Viboud, Cecile
    Simonsen, Lone
    Bjornstad, Ottar N.
    Shaman, Jeffrey
    Chao, Dennis L.
    Khan, Farid
    Grenfell, Bryan T.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (06)
  • [12] Combining incompatible spatial data
    Gotway, CA
    Young, LJ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (458) : 632 - 648
  • [13] [Gutmann M.P. National Research Council National Research Council], 2007, Putting people on the map, protecting confidentiality with linked social-spatial data
  • [14] Hecht B, 2014, INT AAAI C WEBL SOC
  • [15] Resolving Individuals Contributing Trace Amounts of DNA to Highly Complex Mixtures Using High-Density SNP Genotyping Microarrays
    Homer, Nils
    Szelinger, Szabolcs
    Redman, Margot
    Duggan, David
    Tembe, Waibhav
    Muehling, Jill
    Pearson, John V.
    Stephan, Dietrich A.
    Nelson, Stanley F.
    Craig, David W.
    [J]. PLOS GENETICS, 2008, 4 (08)
  • [16] Big data meets public health
    Khoury, Muin J.
    Ioannidis, John P. A.
    [J]. SCIENCE, 2014, 346 (6213) : 1054 - 1055
  • [17] Towards Unrestricted Public Use Business Microdata: The Synthetic Longitudinal Business Database
    Kinney, Satkartar K.
    Reiter, Jerome P.
    Reznek, Arnold P.
    Miranda, Javier
    Jarmin, Ron S.
    Abowd, John M.
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2011, 79 (03) : 362 - 384
  • [18] The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus
    Kraemer, Moritz U. G.
    Sinka, Marianne E.
    Duda, Kirsten A.
    Mylne, Adrian Q. N.
    Shearer, Freya M.
    Barker, Christopher M.
    Moore, Chester G.
    Carvalho, Roberta G.
    Coelho, Giovanini E.
    Van Bortel, Wim
    Hendrickx, Guy
    Schaffner, Francis
    Elyazar, Iqbal R. F.
    Teng, Hwa-Jen
    Brady, Oliver J.
    Messina, Jane P.
    Pigott, David M.
    Scott, Thomas W.
    Smith, David L.
    Wint, G. R. William
    Golding, Nick
    Hay, Simon I.
    [J]. ELIFE, 2015, 4
  • [19] Lawson AB, 2006, STAT METHODS SPATIAL
  • [20] The Parable of Google Flu: Traps in Big Data Analysis
    Lazer, David
    Kennedy, Ryan
    King, Gary
    Vespignani, Alessandro
    [J]. SCIENCE, 2014, 343 (6176) : 1203 - 1205