On Einstein manifolds of positive sectional curvature

被引:47
作者
Gursky, MJ
LeBrun, C
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
[2] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
Einstein manifold; scalar curvature; sectional curvature; Weyl curvature;
D O I
10.1023/A:1006597912184
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M, g) be a compact oriented four-dimensional Einstein manifold. If M has positive intersection form and g has non-negative sectional curvature, we show that, up to rescaling and isometry, (M, g) is CP2, with its standard Fubini-Study metric.
引用
收藏
页码:315 / 328
页数:14
相关论文
共 24 条
[1]  
Anderson M. T., 1992, GEOM FUNCT ANAL, V2, P29
[2]  
Besse A L., 1987, EINSTEIN MANIFOLDS
[4]  
Bishop R.L., 1964, GEOMETRY MANIFOLDS
[6]   FINITENESS THEOREMS FOR RIEMANNIAN MANIFOLDS [J].
CHEEGER, J .
AMERICAN JOURNAL OF MATHEMATICS, 1970, 92 (01) :61-&
[7]  
DERDZINSKI A, 1983, COMPOS MATH, V49, P405
[8]  
DETURCK DM, 1981, ANN SCI ECOLE NORM S, V14, P249
[9]   THE TOPOLOGY OF 4-DIMENSIONAL MANIFOLDS [J].
FREEDMAN, MH .
JOURNAL OF DIFFERENTIAL GEOMETRY, 1982, 17 (03) :357-453
[10]   COMPACT 4-DIMENSIONAL SELF-DUAL EINSTEIN MANIFOLDS WITH POSITIVE SCALAR CURVATURE [J].
FRIEDRICH, T ;
KURKE, H .
MATHEMATISCHE NACHRICHTEN, 1982, 106 :271-299