A list sequential sampling method suitable for real-time sampling

被引:29
作者
Bondesson, Lennart [1 ]
Thorburn, Daniel [2 ]
机构
[1] Umea Univ, Dept Math & Math Stat, SE-90187 Umea, Sweden
[2] Univ Stockholm, Dept Stat, S-10691 Stockholm, Sweden
关键词
correlated Bernoulli and Poisson sampling; inclusion probabilities; list sequential sampling; martingale; pi ps sample; real-time sampling; splitting method; stationary process; 3P sampling; weak m-dependence;
D O I
10.1111/j.1467-9469.2008.00596.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A flexible list sequential pi ps sampling method is introduced and studied. It can reproduce any given sampling design without replacement, of fixed or random sample size. The method is a splitting method and uses successive updating of inclusion probabilities. The main advantage of the method is in real-time sampling situations where it can be used as a powerful alternative to Bernoulli and Poisson sampling and can give any desired second-order inclusion probabilities and thus considerably reduce the variability of the sample size.
引用
收藏
页码:466 / 483
页数:18
相关论文
共 14 条
[1]  
[Anonymous], SPRINGER SERIES STAT
[2]  
BONDESSON L, 2006, 4 UM U DEP MATH MATH
[3]   Pareto sampling versus Sampford and conditional Poisson sampling [J].
Bondesson, Lennart ;
Traat, Imbi ;
Lundqvist, Anders .
SCANDINAVIAN JOURNAL OF STATISTICS, 2006, 33 (04) :699-720
[4]  
Brewer Ken R. W., 1983, LECT NOTES STAT, V15
[5]   Unequal probability sampling without replacement through a splitting method [J].
Deville, JC ;
Tille, Y .
BIOMETRIKA, 1998, 85 (01) :89-101
[6]   DEVELOPMENT OF SAMPLING PLANS BY USING SEQUENTIAL (ITEM BY ITEM) SELECTION TECHNIQUES AND DIGITAL-COMPUTERS [J].
FAN, CT ;
MULLER, ME ;
REZUCHA, I .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1962, 57 (298) :387-&
[7]  
GRAFSTROM A, 2007, 2 UM U DEP MATH MATH
[8]  
Hajek J., 1959, CASOPIS PROPESTOV N, V84, P387
[9]  
Husch B., 2003, FOREST MENSURATION, V4th
[10]  
MEISTER K, 2004, THESIS UMEA U UMEA