Mitochondria: A crossroads for lipid metabolism defect in neurodegeneration with brain iron accumulation diseases

被引:39
作者
Aoun, Manar [1 ]
Tiranti, Valeria [1 ]
机构
[1] Fdn IRCCS Neurol Inst Carlo Besta, Unit Mol Neurogenet, Pierfranco & Luisa Mariani Ctr Study Mitochondria, I-20126 Milan, Italy
关键词
Mitochondria; Neurodegeneration; Lipid metabolism; CoA biosynthesis; Disease; KINASE-ASSOCIATED NEURODEGENERATION; INFANTILE NEUROAXONAL DYSTROPHY; INDEPENDENT PHOSPHOLIPASE A(2); COENZYME-A; MOUSE MODEL; COA SYNTHASE; OXIDATIVE STRESS; U937; CELLS; CARDIOLIPIN; MUTATIONS;
D O I
10.1016/j.biocel.2015.01.018
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Neurodegeneration with brain iron accumulation (NBIA) comprises a group of brain iron deposition syndromes that lead to mixed extrapyramidal features and progressive dementia. Exact pathologic mechanism of iron deposition in NBIA remains unknown. However, it is becoming increasingly evident that many neurodegenerative diseases are hallmarked by metabolic dysfunction that often involves altered lipid profile. Among the identified disease genes, four encode for proteins localized in mitochondria, which are directly or indirectly implicated in lipid metabolism: PANK2, CoASY, PLA2G6 and C19orf12. Mutations in PANIQ and CoASY, both implicated in CoA biosynthesis that acts as a fatty acyl carrier, lead, respectively, to PKAN and CoPAN forms of NBIA. Mutations in PL42G6, which plays a key role in the biosynthesis and remodeling of membrane phospholipids including cardiolipin, lead to PLAN. Mutations in Cl9orf12 lead to MPAN, a syndrome similar to that caused by mutations in PANK2 and PLA2G6. Although the function of Cl9orf12 is largely unknown, experimental data suggest its implication in mitochondrial homeostasis and lipid metabolism. Altogether, the identified mutated proteins localized in mitochondria and associated with different NBIA forms support the concept that dysfunctions in mitochondria and lipid metabolism play a crucial role in the pathogenesis of NBIA. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:25 / 31
页数:7
相关论文
共 61 条
[1]   A pilot trial of deferiprone for neurodegeneration with brain iron accumulation [J].
Abbruzzese, Giovanni ;
Cossu, Giovanni ;
Balocco, Manuela ;
Marchese, Roberta ;
Murgia, Daniela ;
Melis, Maurizio ;
Galanello, Renzo ;
Barella, Susanna ;
Matta, Gildo ;
Ruffinengo, Uberto ;
Bonuccelli, Ubaldo ;
Forni, Gian Luca .
HAEMATOLOGICA-THE HEMATOLOGY JOURNAL, 2011, 96 (11) :1708-1711
[2]   Expression and function of phospholipase A2 in brain [J].
Balboa, MA ;
Varela-Nieto, I ;
Lucas, KK ;
Dennis, EA .
FEBS LETTERS, 2002, 531 (01) :12-17
[3]   Calcium-independent phospholipase A2 mediates proliferation of human promonocytic U937 cells [J].
Balboa, Maria A. ;
Perez, Rebeca ;
Balsinde, Jesus .
FEBS JOURNAL, 2008, 275 (08) :1915-1924
[4]   Selective early cardiolipin peroxidation after traumatic brain injury: An oxidative lipidomics analysis [J].
Bayir, Huelya ;
Tyurin, Vladimir A. ;
Tyurina, Yulia Y. ;
Viner, Rosa ;
Ritov, Vladimir ;
Amoscato, Andrew A. ;
Zhao, Qing ;
Zhang, Xiaojing J. ;
Janesko-Feldman, Keri L. ;
Alexander, Henry ;
Basova, Liana V. ;
Clark, Robert S. B. ;
Kochanek, Patrick M. ;
Kagan, Valerian E. .
ANNALS OF NEUROLOGY, 2007, 62 (02) :154-169
[5]   Neuroaxonal Dystrophy in Calcium-Independent Phospholipase A2β Deficiency Results from Insufficient Remodeling and Degeneration of Mitochondrial and Presynaptic Membranes [J].
Beck, Goichi ;
Sugiura, Yuki ;
Shinzawa, Koei ;
Kato, Shinsuke ;
Setou, Mitsutoshi ;
Tsujimoto, Yoshihide ;
Sakoda, Saburo ;
Sumi-Akamaru, Hisae .
JOURNAL OF NEUROSCIENCE, 2011, 31 (31) :11411-11420
[6]   De novo CoA biosynthesis is required to maintain DNA integrity during development of the Drosophila nervous system [J].
Bosveld, Floris ;
Rana, Anil ;
van der Wouden, Petra E. ;
Lemstra, Willy ;
Ritsema, Martha ;
Kampinga, Harm H. ;
Sibon, Ody C. M. .
HUMAN MOLECULAR GENETICS, 2008, 17 (13) :2058-2069
[7]   Cystamine metabolism and brain transport properties: clinical implications for neurodegenerative diseases [J].
Bousquet, Melanie ;
Gibrat, Claire ;
Ouellet, Melissa ;
Rouillard, Claude ;
Calon, Frederic ;
Cicchetti, Francesca .
JOURNAL OF NEUROCHEMISTRY, 2010, 114 (06) :1651-1658
[8]   Pantethine treatment is effective in recovering the disease phenotype induced by ketogenic diet in a pantothenate kinase-associated neurodegeneration mouse model [J].
Brunetti, Dario ;
Dusi, Sabrina ;
Giordano, Carla ;
Lamperti, Costanza ;
Morbin, Michela ;
Fugnanesi, Valeria ;
Marchet, Silvia ;
Fagiolari, Gigliola ;
Sibon, Ody ;
Moggio, Maurizio ;
d'Amati, Giulia ;
Tiranti, Valeria .
BRAIN, 2014, 137 :57-68
[9]   Pantothenate kinase-associated neurodegeneration: altered mitochondria membrane potential and defective respiration in Pank2 knock-out mouse model [J].
Brunetti, Dario ;
Dusi, Sabrina ;
Morbin, Michela ;
Uggetti, Andrea ;
Moda, Fabio ;
DAmato, Ilaria ;
Giordano, Carla ;
d'Amati, Giulia ;
Cozzi, Anna ;
Levi, Sonia ;
Hayflick, Susan ;
Tiranti, Valeria .
HUMAN MOLECULAR GENETICS, 2012, 21 (24) :5294-5305
[10]   Skin fibroblasts from pantothenate kinase-associated neurodegeneration patients show altered cellular oxidative status and have defective iron-handling properties [J].
Campanella, Alessandro ;
Privitera, Daniela ;
Guaraldo, Michela ;
Rovelli, Elisabetta ;
Barzaghi, Chiara ;
Garavaglia, Barbara ;
Santambrogio, Paolo ;
Cozzi, Anna ;
Levi, Sonia .
HUMAN MOLECULAR GENETICS, 2012, 21 (18) :4049-4059