Lax forms and the Euler top equations: A new approach

被引:0
作者
Kurt, Levent [1 ,2 ]
机构
[1] CUNY, Baruch Coll, Dept Nat Sci, New York, NY 10010 USA
[2] CUNY, Kingsborough Community Coll, Dept Phys Sci, Brooklyn, NY 11235 USA
关键词
The Euler top; Lax form; Heisenberg's equation; Schrodinger equation; Jacobi elliptic functions; Matrix mechanics;
D O I
10.1016/j.aop.2011.12.008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the problem of torque-free spinning of a rigid body in the context of Lax representation from which the linearization of the nonlinear Euler top equations naturally arises. The Lax equation with Hermitian matrices leads to the two equivalent pictures of quantum mechanics, namely, the Schrodinger and Heisenberg pictures. We derive a 3 x 3 Hamiltonian matrix based on principal moments of inertia and the Jacobi elliptic functions for the case of a 3-dimensional free rotation. We show generalization of our work for the n-dimensional case. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1231 / 1237
页数:7
相关论文
共 20 条